精英家教网 > 高中数学 > 题目详情

在区间[-1,1]上随机取一个数x,则sin的值介于-之间的概率为(  )

(A)  (B)  (C)  (D)

D.∵-1≤x≤1,

∴-.

由-≤sin,得-

即-≤x≤1,故所求事件的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2003•北京)设y=f(x)是定义在区间[-1,1]上的函数,且满足条件:(i)f(-1)=f(1)=0;(ii)对任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(Ⅰ)证明:对任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(Ⅱ)判断函数g(x)=
1+x,x∈[-1,0)
1-x,x∈[0,1]
是否满足题设条件;
(Ⅲ)在区间[-1,1]上是否存在满足题设条件的函数y=f(x),且使得对任意的u,v∈[-1,1],都有|f(u)-f(v)|=u-v.
若存在,请举一例:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山一模)已知函数f(x)=ln(1+x)-mx.
(I)当m=1时,求函数f(x)的单调递减区间;
(II)求函数f(x)的极值;
(III)若函数f(x)在区间[0,e2-1]上恰有两个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:北京 题型:解答题

设y=f(x)是定义在区间[-1,1]上的函数,且满足条件:(i)f(-1)=f(1)=0;(ii)对任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(Ⅰ)证明:对任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(Ⅱ)判断函数g(x)=
1+x,x∈[-1,0)
1-x,x∈[0,1]
是否满足题设条件;
(Ⅲ)在区间[-1,1]上是否存在满足题设条件的函数y=f(x),且使得对任意的u,v∈[-1,1],都有|f(u)-f(v)|=u-v.
若存在,请举一例:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+4x的定义域是R,且在区间[-1,1]上是增函数,

(1)求实数a的取值范围;

(2)若函数f(x)的导函数f′(x)在[-1,1]上的最大值为4,试确定函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:2011年河南省新乡、许昌、平顶山高考数学一模试卷(理科)(解析版) 题型:选择题

在R上定义的函数f(x)是偶函数,且f(x)=f(2-x),若在区间[1,2]上f′(x)>0,则f(x)( )
A.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数
B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数
C.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数
D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数

查看答案和解析>>

同步练习册答案