精英家教网 > 高中数学 > 题目详情
设函数f(x)在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f(1-m)+f(-m)<0,则m的取值范围是(  )
分析:由函数f(x)为奇函数,我们易将不等式f(1-m)+f(-m)<0化为f(1-m)<f(m),再结合f(x)在(-1,1)上是减函数,利用函数的单调性易得m的取值范围,注意定义域.
解答:解:∵函数f(x)在(-1,1)上是奇函数
∴f(-m)=-f(m)
则f(1-m)<-f(-m)=f(m)
∵函数f(x)在(-1,1)上是奇函数,且在(-1,1)上是减函数,
-1<1-m<1
-1<m<1
1-m>m
解得0<m<
1
2

∴m的取值范围是:0<m<
1
2

故选:A.
点评:本题主要考查函数奇偶性和单调性的应用,要求熟练掌握函数的综合性质,同时考查了运算求解的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、设函数f(x)在区间[a,b]上连续,若满足
f(a)•f(b)≤0
,则方程f(x)=0在区间[a,b]上一定有实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)在R上有定义,下列函数:①y=-|f(x)|;②y=|x|•f(x2);③y=-f(-x);④y=f(x)+f(-x)
其中偶函数的有
②④
②④
.(写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f1(x)=3|x-1|,f2(x)=a•3|x-2|,(x∈R,a>0).函数f(x)定义为:对每个给定的实数x,f(x)=
f1(x)    f1(x)≤f2(x) 
f2(x)    f1(x)>f2(x) 

(1)若f(x)=f1(x)对所有实数x都成立,求a的取值范围;
(2)设t∈R,t>0,且f(0)=f(t).设函数f(x)在区间[0,t]上的单调递增区间的长度之和为d(闭区间[m,n]的长度定义为n-m),求
d
t

(3)设g(x)=x2-2bx+3.当a=2时,若对任意m∈R,存在n∈[1,2],使得f(m)≥g(n),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)设函数f(x)在R上是可导的偶函数,且满足f (x-1)=-f (x+1),则曲线y=f (x)在点x=10处的切线的斜率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+ax2+bx.
(Ⅰ)当a=0,b=-1时,求f(x)的单调区间;
(Ⅱ)设函数f(x)在点P(t,f(t))(0<t<1)处的切线为l,直线l与y轴相交于点Q.若点Q的纵坐标恒小于1,求实数a的取值范围.

查看答案和解析>>

同步练习册答案