精英家教网 > 高中数学 > 题目详情

如图,动点M到两定点A(-1,0)、B(2,0)构成△MAB,且∠MBA=2∠MAB,设动点M的轨迹为C.

(Ⅰ)求轨迹C的方程;

(Ⅱ)设直线y=-2x+m与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•四川)如图,动点M到两定点A(-1,0)、B(2,0)构成△MAB,且∠MBA=2∠MAB,设动点M的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)设直线y=-2x+m与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求
|PR||PQ|
的取值范围.

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

如图,动点M到两定点A(-1,0)、B(2,0)构成△MAB,且∠MBA=2∠MAB,设动点M的轨迹为C。
(1)求轨迹C的方程;
(2)设直线y=-2x+m与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年内蒙古包头33中高二(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,动点M到两定点A(-1,0)、B(2,0)构成△MAB,且∠MBA=2∠MAB,设动点M的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)设直线y=-2x+m与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年四川省高考数学试卷(理科)(解析版) 题型:解答题

如图,动点M到两定点A(-1,0)、B(2,0)构成△MAB,且∠MBA=2∠MAB,设动点M的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)设直线y=-2x+m与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求的取值范围.

查看答案和解析>>

同步练习册答案