精英家教网 > 高中数学 > 题目详情
如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点.
(1)求证:MN∥平面CDEF;
(2)求多面体A﹣CDEF的体积.
解:(1)证明:由多面体AEDBFC的三视图知,
三棱柱AED﹣BFC中,底面DAE是等腰直角三角形,
DA=AE=2,DA⊥平面ABEF,
侧面ABFE,ABCD都是边长为2的正方形.
连接EB,则M是EB的中点,
在△EBC中,MN∥EC,
且EC平面CDEF,MN平面CDEF,
∴MN∥平面CDEF.
(2)因为DA⊥平面ABEF,EF平面ABEF,
∴EF⊥AD,又EF⊥AE,
所以,EF⊥平面ADE,
∴四边形 CDEF是矩形,且侧面CDEF⊥平面DAE
取DE的中点H,
∵DA⊥AE,DA=AE=2,
,且AH⊥平面CDEF.
所以多面体A﹣CDEF的体积
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点.
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积;
(3)求证:CE⊥AF.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•汕头模拟)如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点.
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点.
(1)求证:MN∥平面CDEF;
(2)求证:CE⊥AF;
(3)求多面体A-CDEF的体积.

查看答案和解析>>

科目:高中数学 来源:2010年陕西省高考数学全真预测试卷(解析版) 题型:解答题

如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点.
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积;
(3)求证:CE⊥AF.

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省锦州市高考数学三模试卷(解析版) 题型:解答题

如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点.
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积;
(3)求证:CE⊥AF.

查看答案和解析>>

同步练习册答案