精英家教网 > 高中数学 > 题目详情
15.若执行如图所示的程序框图后,输出的结果是-29,则判断框中的整数k的值是(  )
A.3B.4C.5D.6

分析 模拟执行程序框图,依次写出每次循环得到的S,n的值,当n=5时应该不满足条件5<k,输出S的值为-29,从而可得判断框中的整数k的值是5.

解答 解:模拟执行程序框图,可得
n=1,S=1
满足条件n<k,S=-1,n=2
满足条件n<k,S=-5,n=3
满足条件n<k,S=-13,n=4
满足条件n<k,S=-29,n=5
由题意,此时应该不满足条件5<k,输出S的值为-29,
则判断框中的整数k的值是5,
故选:C.

点评 本题主要考查了循环结构的程序框图,正确判断退出循环的条件是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=loga(x3-2x)(a>0且a≠1)在区间(-$\sqrt{2}$,-1)内恒有f(x)>0,则f(x)的单调递减区间为(  )
A.(-∞,-$\frac{{\sqrt{6}}}{3}$),($\frac{{\sqrt{6}}}{3}$,+∞)B.(-$\sqrt{2}$,-$\frac{{\sqrt{6}}}{3}$),($\sqrt{2}$,+∞)C.(-$\sqrt{2}$,-$\frac{{\sqrt{6}}}{3}$),($\frac{{\sqrt{6}}}{3}$,+∞)D.(-$\frac{{\sqrt{6}}}{3}$,$\frac{{\sqrt{6}}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)若x∈[0,2π].求函数y=$\sqrt{\frac{\sqrt{3}}{2}-sinx}$的定义域;
(2)求函数y=$\sqrt{2-|x-4|}$+lg(-sinx)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.用篱笆围一个面积为100m2的矩形菜园,则所用篱笆长度最短为40m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}和{bn}都是公差为1的等差数列,其首项分别为a1,b1,且若a1+b1=6,a1>b1,a1∈N+,b1∈N+,则数列${a_{b_1}},{a_{b_2}},…,{a_{b_n}},…$的前10项的和等于95.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线${x^2}-\frac{y^2}{a}=1$的一条渐近线与直线x-2y+3=0平行,则离心率e=$\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=x2-ax+b,a,b∈R.
(1)当a=2时,记函数|f(x)|在[0,4]上的最大值为g(b),求g(b)的最小值;
(2)存在实数a,使得当x∈[0,b]时,2≤f(x)≤6恒成立,求b的最大值及此时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在数列{an}中,a1=1,${a_{n+1}}=2{a_n}+1(n∈{N^*})$,则数列$\left\{{\frac{1}{{1+{a_n}}}}\right\}$的各项和为2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合$M=\{x|y={log_2}(-{x^2}+x+6)\}$,N={y|y=x2+1,x∈R},则集合M∩N=(  )
A.(-2,+∞)B.(-2,3)C.[1,3)D.R

查看答案和解析>>

同步练习册答案