精英家教网 > 高中数学 > 题目详情
13.若一次函数f(x)=kx+1在区间[-1,1]上有正有负,求k的取值范围.

分析 若一次函数f(x)=kx+1在区间[-1,1]上有正有负,则f(-1)f(1)=(-k+1)(k+1)<0,解得答案.

解答 解:若一次函数f(x)=kx+1在区间[-1,1]上有正有负,
则f(-1)f(1)=(-k+1)(k+1)<0,
解得:k∈(-∞,-1)∪(1,+∞)

点评 本题考查的知识点是一次函数的图象和性质,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.(1)计算eln3+(0.01)${\;}^{-\frac{1}{2}}$+(1-$\sqrt{3}$)0
(2)若2lg(x-2y)=lgy+lg(5x-4y),求log2$\frac{x}{y}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若a=3a+1,b=ln2,c=log2sin$\frac{π}{12}$,则(  )
A.b>a>cB.a>b>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求a的值,使关于x的不等式ax2+2x+6a≤0(a≠0)的解集为{x|x<2或x>3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2+ax+b的图象关于直线x=-1对称.
(1)求实数a的值;
(2)若f(x)的图象过点(2,0),求x∈[-2,1]时f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一各棱长均为2的三棱柱,其所有顶点都在一个球面上,则该球的表面积是(  )
A.$\frac{49}{9}$πB.$\frac{7}{3}$πC.$\frac{28}{3}$πD.$\frac{28}{9}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.判断下列函数是否为奇函数:
(1)f(x)=$\frac{1}{x}$+2;
(2)f(x)=x3+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知凸四边形ABCD的边长为AB=a,BC=b,CD=c,DA=d,且四边形既存在外接圆,又存在内切圆,则四边形ABCD的面积为$\sqrt{abcd}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x,g(x)=-$\frac{4}{x}$,p(x)=f(x)-g(x),求y=p(x)的函数表达式.并写出y=p(x)的单凋递减区间.

查看答案和解析>>

同步练习册答案