精英家教网 > 高中数学 > 题目详情

设抛物线M方程为y2=2px(p>0),其焦点为F,P(a,b(a≠0为直线y=x与抛物线M的一个交点,|PF|=5.

(1)求抛物线的方程;

(2)过焦点F的直线l与抛物线交于A,B两点,试问在抛物线M的准线上是否存在一点Q,使得△QAB为等边三角形,若存在求出Q点的坐标,若不存在请说明理由.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线方程为y2=p(x+1)(p>0),直线x+y=m与x轴的交点在抛物线的准线的右边.
(1)求证:直线与抛物线总有两个交点;
(2)设直线与抛物线的交点为Q、R,OQ⊥OR,
求p关于m的函数f(m)的表达式;
(3)在(2)的条件下,若抛物线焦点F到直线x+y=m的距离为
2
2

求此直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线M方程为y2=2px(p>0),其焦点为F,P(a,b)(a≠0)为直线y=x与抛物线M的一个交点,|PF|=5
(1)求抛物线的方程;
(2)过焦点F的直线l与抛物线交于A,B两点,试问在抛物线M的准线上是否存在一点Q,使得△QAB为等边三角形,若存在求出Q点的坐标,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设抛物线M方程为y2=2px(p>0),其焦点为F,P(a,b)(a≠0)为直线y=x与抛物线M的一个交点,|PF|=5
(1)求抛物线的方程;
(2)过焦点F的直线l与抛物线交于A,B两点,试问在抛物线M的准线上是否存在一点Q,使得△QAB为等边三角形,若存在求出Q点的坐标,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年浙江省温州22中高考数学一模预测试卷2(文科)(解析版) 题型:解答题

设抛物线M方程为y2=2px(p>0),其焦点为F,P(a,b)(a≠0)为直线y=x与抛物线M的一个交点,|PF|=5
(1)求抛物线的方程;
(2)过焦点F的直线l与抛物线交于A,B两点,试问在抛物线M的准线上是否存在一点Q,使得△QAB为等边三角形,若存在求出Q点的坐标,若不存在请说明理由.

查看答案和解析>>

同步练习册答案