精英家教网 > 高中数学 > 题目详情

已知不等式|1-kxy|>|kx-y|.

(1)当k=1,y=2时,解关于x的不等式|1-kxy|>|kx-y|;

(2)若不等式|1-kxy|>|kx-y|对任意满足|x|<1,|y|<1的实数x,y恒成立,求实数k的取值范围

 

【答案】

 

(1)  x∈(-∞,-1) ∩(1,+ ∞).

(2)  k∈[-1,1]

【解析】(1)当k=1,y=2时,不等式|1-kxy|>|kx-y|即为|1-2x|>|x-2|.

所以1-4x+4x2>x2-4x+4x2>1,所以x∈(-∞,-1) ∩(1,+ ∞).        (5分)

(2)由已知得|1-kxy|>|kx-y||1-kxy|2>|kx-y|21+k2x2y2>k2x2+y2,

即(k2x2-1)(y2-1) >0对任意满足|x|<1,|y|<1的实数x,y恒成立.         

而y2<1,所以y2-1<0,故(k2x2-1)(y2-1) >0k2x2-1<0.

于是命题转化为k2x2-1<0对任意满足|x|<1的实数x恒成立.  (8分) 

当x=0时,易得k∈R;

当x≠0时,有k2<对任意满足|x|<1,x≠0的实数x恒成立.

由0<|x|<10<x2<1∈(1,+ ∞),所以k2≤1.

综合以上得k∈[-1,1]即为所求的取值范围.  

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不等式|1-kxy|>|kx-y|.
(1)当k=1,y=2时,解关于x的不等式|1-kxy|>|kx-y|;
(2)若不等式|1-kxy|>|kx-y|对任意满足|x|<1,|y|<1的实数x,y恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知不等式|1-kxy|>|kx-y|.
(1)当k=1,y=2时,解关于x的不等式|1-kxy|>|kx-y|;
(2)若不等式|1-kxy|>|kx-y|对任意满足|x|<1,|y|<1的实数x,y恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知不等式|1-kxy|>|kx-y|.
(1)当k=1,y=2时,解关于x的不等式|1-kxy|>|kx-y|;
(2)若不等式|1-kxy|>|kx-y|对任意满足|x|<1,|y|<1的实数x,y恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河北省保定市徐水一中高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

已知不等式|1-kxy|>|kx-y|.
(1)当k=1,y=2时,解关于x的不等式|1-kxy|>|kx-y|;
(2)若不等式|1-kxy|>|kx-y|对任意满足|x|<1,|y|<1的实数x,y恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案