【题目】在极坐标系中,直线的方程为2ρcosθ+5ρsinθ﹣8=0,曲线E的方程为ρ=4cosθ.
(1)以极点O为直角坐标原点,极轴为x轴正半轴建立平面直角坐标系,分别写出直线l与曲线E的直角坐标方程;
(2)设直线l与曲线E交于A,B两点,点C在曲线E上,求△ABC面积的最大值,并求此时点C的直角坐标.
【答案】(1)2x+5y﹣8=0,(x﹣2)2+y2=4.
(2)
.点C坐标为(
).
【解析】
(1)直接利用转换关系式,把参数方程极坐标方程和直角坐标方程之间进行转换.
(2)利用垂径定理和三角形的面积公式的应用求出结果.
(1)直线的方程为2ρcosθ+5ρsinθ﹣8=0,转换为直角坐标方程为2x+5y﹣8=0,
曲线E的方程为ρ=4cosθ.转换为直角坐标方程为x2+y2=4x,转换为标准式为(x﹣2)2+y2=4.
(2)直线l与曲线E交于A,B两点,点C在曲线E上,所以圆心(2,0)到直线2x+5y﹣8=0的距离d
,
所以|AB|=2
,所以
.
所以经过圆心且垂直于直线2x+5y﹣8=0的直线方程为5x﹣2y﹣10=0,
所以交点C的坐标满足
解得
,
所以点C坐标为(
).
科目:高中数学 来源: 题型:
【题目】四棱锥P﹣ABCD中平面PAD⊥平面ABCD,AB∥CD,AB⊥AD,M为AD中点,PA=PD
,AD=AB=2CD=2.
(1)求证:平面PMB⊥平面PAC;
(2)求二面角A﹣PC﹣D的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线C的参数方程为:
(
为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为
.
(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)设点P的直角坐标为
,若直线l与曲线C分别相交于A,B两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某健康社团为调查居民的运动情况,统计了某小区100名居民平均每天的运动时长(单位:小时)并根据统计数据分为
六个小组(所调查的居民平均每天运动时长均在
内),得到的频率分布直方图如图所示.
![]()
(1)求出图中
的值,并估计这
名居民平均每天运动时长的平均值及中位数(同一组中的每个数据可用该组区间的中点值代替);
(2)为了分析出该小区居民平均每天的运动量与职业、年龄等的关系,该社团按小组用分层抽样的方法抽出20名居民进一步调查,试问在
时间段内应抽出多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个三位数,个位、十位、百位上的数字依次为x,y,z,当且仅当y>x,y>z时,称这样的数为“凸数”(如243),现从集合{1,2,3,4}中取出三个不相同的数组成一个三位数,则这个三位数是“凸数”的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是棱长为2的正方形,E为AD的中点,以CE为折痕把△DEC折起,使点D到达点P的位置,且点P的射影O落在线段AC上.
(1)求
;
(2)求几何体P﹣ABCE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知拋物线C:
经过点
,其焦点为F,M为抛物线上除了原点外的任一点,过M的直线l与x轴、y轴分别交于A,B两点.
Ⅰ
求抛物线C的方程以及焦点坐标;
Ⅱ
若
与
的面积相等,证明直线l与抛物线C相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三年级有1000人,某次考试不同成绩段的人数
,且所有得分都是整数.
(1)求全班平均成绩;
(2)计算得分超过141的人数;(精确到整数)
(3)甲同学每次考试进入年级前100名的概率是
,若本学期有4次考试,
表示进入前100名的次数,写出
的分布列,并求期望与方差.
参考数据:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com