精英家教网 > 高中数学 > 题目详情

设f(x)=x3,等差数列{an}中a3=7,a1+a2+a3=12.记Sn=f(),令bn=an·sn,数列的前n项和为Tn

(1)求{an}的通项公式和Sn

(2)求证:Tn<

(3)是否存在正整数m>n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=x3mx2nx.

(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式;

(2)如果mn<10(mn∈N*),f(x)的单调递减区间的长度是正整数,试求mn的值.(注:区间(ab)的长度为ba).

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)

f(x)=x3,等差数列{an}中a3=7,,记Sn,令bnanSn,数列的前n项和为Tn

(1)求{an}的通项公式和Sn;                  

(2)求证:Tn

(3)是否存在正整数mn,且1<mn,使得T1TmTn成等比数列?若存在,求出mn的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)

f(x)=x3,等差数列{an}中a3=7,,记Sn,令bnanSn,数列的前n项和为Tn

(1)求{an}的通项公式和Sn;                  

(2)求证:Tn

(3)是否存在正整数mn,且1<mn,使得T1TmTn成等比数列?若存在,求出mn的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=x3,等差数列{an}中a3=7,,记Sn,令bnanSn,数列的前n项和为Tn

(1)求{an}的通项公式和Sn;                  

(2)求证:Tn

(3)是否存在正整数mn,且1<mn,使得T1TmTn成等比数列?若存在,求出mn的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=x3,等差数列{an}中a3=7,,记Sn,令bnanSn,数列的前n项和为Tn

(1)求{an}的通项公式和Sn;                  

(2)求证:Tn

(3)是否存在正整数mn,且1<mn,使得T1TmTn成等比数列?若存在,求出mn的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案