精英家教网 > 高中数学 > 题目详情

设集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},
(1)若A∩B=B,求实数m的取值范围;
(2)当x∈R时,没有元素x使得x∈A与x∈B同时成立,求实数m的取值范围.

解:(1)∵A∩B=B,∴B⊆A
当m+1>2m-1,即m<2时,B=∅,满足B⊆A.
当m+1≤2m-1,即m≥2时,要使B⊆A成立,
,可得2≤m≤3,
综上,m≤3时有A∩B=B.
(2)因为x∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},又没有元素x使x∈A与x∈B同时成立,
∴A与B交集为空集.
∴①若B=∅,即m+1>2m-1,得m<2时满足条件;
②若B≠∅,则要满足的条件是

解得m>4.
综上,有m<2或m>4.
分析:(1)若A∩B=B,则B⊆A,即说明B是A的子集,分B=∅与B≠∅讨论,即可求得实数m的取值范围;
(2)当x∈R时,没有元素x使x∈A与x∈B同时成立,则说明A与B交集为空集,再分B=∅与B≠∅讨论,即可求得实数m的取值范围.
点评:利用集合的关系,建立不等关系,求解参数问题,注意集合B能否是空集,必要时要进行讨论是解决这类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|-2≤x≤5},B={x|m-1≤x≤2m+1}.若A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|2≤x<4},B={x|x≥3},那么A∪B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|2≤x<4},B={x|3x-7≥8-2x},求A∩B,?R(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|-2<x<-1},B={x|y=lg
x-a3a-x
,a≠0,a∈R}.
(1)当a=1时,求集合B;
(2)当A∪B=B时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|-2≤x≤4},集合B={x|-3<x<2},则A∪B=
(-3,4]
(-3,4]

查看答案和解析>>

同步练习册答案