精英家教网 > 高中数学 > 题目详情
设P是直线x+y-b=0上的一个动点,过P作圆x2+y2=1的两条切线PA,PB,若∠APB的最大值为60°,则b=______.
由题意可得,当PO和直线x+y-b=0垂直时,∠APB的最大值为60°,此时∠APO=30°,PO=2r=2,
即圆心O到直线x+y-b=0的距离为2,即 
|0+0-b|
2
=2,解得 b=±2
2

故答案为±2
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点S过点T(0,2)且被x轴截得的弦CD长为4.
(1)求动圆圆心S的轨迹E的方程;
(2)设P是直线l:y=x-2上任意一点,过P作轨迹E的切线PA,PB,A,B是切点,求证:直线AB恒过定点M;
(3)在(2)的条件下,过定点M作直线:y=x-2的垂线,垂足为N,求证:MN是∠ANB的平分线.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是直线x+y-b=0上的一个动点,过P作圆x2+y2=1的两条切线PA,PB,若∠APB的最大值为60°,则b=
±2
2
±2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆一模)已知抛物线y2=2px(p>0)的焦点为椭圆
x2
4
+
y2
3
=1d的右焦点,点A、B为抛物线上的两点,O是抛物线的顶点,OA⊥OB.
(I)求抛物线的标准方程;
(Ⅱ)求证:直线AB过定点M(4,0);
(III)设弦AB的中点为P,求点P到直线x-y=0的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省苏州市高二(下)期末数学试卷(文科)(解析版) 题型:填空题

设P是直线x+y-b=0上的一个动点,过P作圆x2+y2=1的两条切线PA,PB,若∠APB的最大值为60°,则b=   

查看答案和解析>>

同步练习册答案