科目:高中数学 来源:2012-2013学年湖北武汉部分重点中学高二上学期期末考试理科数学卷(带解析) 题型:解答题
(本小题满分14分) 已知在单位圆x²+y²=1上任取一点M,作MN⊥x轴,垂足为N,
= 2
.
(Ⅰ)求动点Q的轨迹
的方程;
(Ⅱ)设点
,点
为曲线
上任一点,求点
到点
距离的最大值
;
(Ⅲ)在
的条件下,设△
的面积为
(
是坐标原点,
是曲线
上横坐标为
的点),以
为边长的正方形的面积为
.若正数
满足
,问
是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2015届福建省高一下学期第一学段考试数学试卷(解析版) 题型:填空题
在平面直角坐标系xOy中,圆C的方程为x²+y²-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是 .
查看答案和解析>>
科目:高中数学 来源:2015届福建省高一下学期第一学段考试数学试卷(解析版) 题型:选择题
圆:x²+y²-4x+6y=0和圆:x²+y²-6x=0交于A,B两点,则AB的垂直平分线的方程是 ( )
A.x+y+3=0 B.2x-y-5="0" C.3x-y-9=0 D.4x-3y+7=0
查看答案和解析>>
科目:高中数学 来源:2014届湖北武汉部分重点中学高二上学期期末考试理科数学卷(解析版) 题型:解答题
(本小题满分14分) 已知在单位圆x²+y²=1上任取一点M,作MN⊥x轴,垂足为N,
= 2
.
(Ⅰ)求动点Q的轨迹
的方程;
(Ⅱ)设点
,点
为曲线
上任一点,求点
到点
距离的最大值
;
(Ⅲ)在
的条件下,设△
的面积为
(
是坐标原点,
是曲线
上横坐标为
的点),以
为边长的正方形的面积为
.若正数
满足
,问
是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com