精英家教网 > 高中数学 > 题目详情

过正方形ABCD的顶点A作线段PA⊥平面ABCD,且PA=AB,则平面ABP与平面CDP所成锐二面角的度数是

[  ]

A.90°

B.60°

C.45°

D.30°

答案:C
提示:

过P作CD的平行线PE,可以证明平面ABP∩平面CDP=PE,则PE⊥PA,PE⊥PD,所以∠APD就是平面ABP与平面CDP所成的锐二面角.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、过正方形ABCD的顶点A,引PA⊥平面ABCD,若PA=AB,则平面ABP和平面CDP所成的二面角的大小是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

18、过正方形ABCD的顶点A作PA⊥平面ABCD,设PA=AB=a,求平面PAB和平面PCD所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

过正方形ABCD的顶点A作线段A′A⊥平面ABCD.若A′A=AB,则平面A′AB与平面A′CD所成角的度数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

过正方形ABCD的顶点A作线段AA1⊥平面ABCD,且AA1=AB,则平面ABA1与平面CDA1所成的二面角的度数是(    )

A.30°              B.45°             C.60°              D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

过正方形ABCD的顶点A作PA⊥平面ABCD,设PA=AB=a,求二面角BPCD的大小.

查看答案和解析>>

同步练习册答案