精英家教网 > 高中数学 > 题目详情
已知函数f1(x)=e|x-2a+1|f2(x)=e|x-a|+1,x∈R
(1)若a=2,求f(x)=f1(x)+f2(x)在x∈[2,3]上的最小值;
(2)若x∈[a,+∞)时,f2(x)≥f1(x),求a的取值范围;
(3)求函数g(x)=
f1(x)+f2(x)
2
-
|f1(x)-f2(x)|
2
在x∈[1,6]上的最小值.
(1)因为a=2,且x∈[2,3],所以f(x)=e|x-3|+e|x-2|+1=e3-x+ex-1=
e3
ex
+
ex
e
≥2
e3
ex
×
ex
e
=2e,
当且仅当x=2时取等号,所以f(x)在x∈[2,3]上的最小值为2e …4分
(2)由题意知,当x∈[a,+∞) 时,e|x-2a+1|≤e|x-a|+1,即|x-2a+1|≤|x-a|+1 恒成立…6分
所以|x-2a+1|≤x-a+1,即2ax≥3a2-2a 对x∈[a,+∞) 恒成立,
则由
2a≥0
2a2≥3a2-2a
,得所求a的取值范围是0≤a≤2…9分
(3)记h1(x)=|x-(2a-1)|,h2(x)=|x-a|+1,则h1(x),h2(x)的图象分别是以(2a-1,0)和(a,1)为顶点开口向上的V型线,且射线的斜率均为±1.
①当1≤2a-1≤6,即1≤a≤
7
2
时,∴g(x)在x∈[1,6]上的最小值为f1(2a-1)=e0=1…10分
②当a<1时,可知2a-1<a,所以
(ⅰ)当h1(a)≤h2(a),得|a-(2a-1)|≤1,即-2≤a≤0时,在x∈[1,6]上,h1(x)<h2(x),即f1(x)>f2(x),所以g(x)=f2(x)的最小值为f2(1)=e2-a
(ii)当h1(a)>h2(a),得|a-(2a-1)|>1,即a<-2或0<a<1时,在x∈[1,6]上,h1(x)>h2(x),即f1(x)<f2(x),所以g(x)=f1(x)的最小值为f1(1)=e3-2a
③当a>
7
2
时,因为2a-1>a,可知2a-1>6,且h1(6)=2a-7>a-5=h2(6),所以
(ⅰ)当
7
2
<a≤6
时,g(x)的最小值为f2(a)=e
(ii)当a>6时,因为h1(a)=a-1>1=h2(a),∴在x∈[1,6]上,h1(x)>h2(x),即f1(x)<f2(x),所以g(x)在x∈[1,6]上的最小值为f2(6)=ea-5…15分
综上所述,函数g(x)在x∈[1,6]上的最小值为
1,1≤a≤
7
2
e2-a,-2≤a≤0
e3-3a,a<-2或0<a<1
e,
7
2
<a≤6
ea-5,a>6
…16分
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+lnx(a∈R).
(1)当a=
1
2
时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称为g(x)为f1(x),f2(x)的“活动函数”.
已知函数f1(x)=(a-
1
2
)x2+2ax+(1-a2)lnx
f2(x)=
1
2
x2+2ax

①若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围;
②当a=
2
3
时,求证:在区间(1,+∞)上,函数f1(x),f2(x)的“活动函数”有无穷多个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+lnx(a∈R).
(1)当a=
1
2
时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”.已知函数f1(x)=(a-
1
2
)x2+2ax+(1-a2)lnx,f2(x)=
1
2
x2
+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•太原模拟)已知函数f1(x)=axf2(x)=xaf3(x)=logax(其中a>0且a≠1),当x≥0且y≥0时,在同一坐标系中画出其中两个函数的大致图象,正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)已知函数f1(x)=e|x-a|f2(x)=ebx
(I)若f(x)=f1(x)+f2(x)-bf2(-x),是否存在a,b∈R,y=f(x)为偶函数.如果存在.请举例并证明你的结论,如果不存在,请说明理由;
〔II)若a=2,b=1.求函数g(x)=f1(x)+f2(x)在R上的单调区间;
(III )对于给定的实数?x0∈[0,1],对?x∈[0,1],有|f1(x)-f2(x0)|<1成立.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f1(x)=x+
4
x
(x≠0),f2(x)=cosx+
4
cosx
(0<x<
π
2
)
,f3(x)=
8x
x2+1
(x>0),f4(x)=
9
x+2
+x(x≥-2)
,其中以4为最小值的函数个数是(  )

查看答案和解析>>

同步练习册答案