精英家教网 > 高中数学 > 题目详情

若A={1,5,-x2},B={1,2x-3},且A∪B=A,则这样的x的不同值有

[  ]

A.1个

B.2个

C.3个

D.4个

答案:C
解析:

由题意得BA,∴有2x-3=5或2x-3=-x2.∴x=4,-3,1.故选C.


练习册系列答案
相关习题

科目:高中数学 来源:河南省普通高中2012届高三高考适应性测试数学理科试题 题型:044

设函数f(x)=|3x-1|+ax+3.

(1)若a=1,解不等式f(x)≤5;

(2)若函数f(x)有最小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:河南省普通高中2012届高三高考适应性测试数学文科试题 题型:044

设函数f(x)=|3x-1|+ax+3

(1)若a=1,解不等式f(x)≤5;

(2)若函数f(x)有最小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(3’+5’+8’)设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2pyp≠0)的异于原点的交点

(1)若a=1,b=2,p=2,求点Q的坐标;

(2)若点P(a,b)(ab≠0)在椭圆+y2=1上,p=,

求证:点Q落在双曲线4x2-4y2=1上;

(3)若动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试理科数学(上海卷) 题型:解答题

(3’+5’+8’)设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2pyp≠0)的异于原点的交点

(1)若a=1,b=2,p=2,求点Q的坐标;

(2)若点P(a,b)(ab≠0)在椭圆+y2=1上,p=,

求证:点Q落在双曲线4x2-4y2=1上;

(3)若动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由.

 

查看答案和解析>>

同步练习册答案