精英家教网 > 高中数学 > 题目详情
17.如图,在平行六面体ABCD-A1B1C1D1中,O是B1D1的中点,求证:B1C∥平面ODC1

分析 连结CD1,交DC1于E,连结OE,由三角形中位线定理得OE∥B1C,由此能证明B1C∥平面ODC1

解答 证明:连结CD1,交DC1于E,
∵平行六面体ABCD-A1B1C1D1中,DCC1D1是平行四边形,
∴E是DC1的中点,
连结OE,∵O是B1D1的中点,∴OE∥B1C,
∵B1C?平面ODC1,OE?平面ODC1
∴B1C∥平面ODC1

点评 本题考查线面平行的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知等比数列{an}的公比q>1,前n项和为Sn,并且满足a2+a3+a4=28,a3+2是a2和a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog${\;}_{\frac{1}{2}}$an,Sn=b1+b2+…+bn,求使Sn>254-n•2n+1成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知O是△ABC所在平面内一点.
(1)已知D为BC边中点,且2$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$,证明:$\overrightarrow{AO}=\overrightarrow{OD.}$;
(2)已知$\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}$=$\overrightarrow{0}$,△BOC的面积为2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{3}$,一条准线方程为x=3,求椭圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.数列{an}满足a1=1,$\frac{{a}_{n}+1}{n+1}$=$\frac{{a}_{n}}{n}$+1,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=3n•$\sqrt{{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知一次函数的图象经过点(1,0)和(0,1),则此一次函数的解析式为(  )
A.f(x)=-xB.f(x)=x-1C.f(x)=x+1D.f(x)=-x+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下列几个命题:
①方程x2+(a-3)x+a=0若有一个正实根,一个负实根,则a<0;
②函数f(x)=a是偶函数,但不是奇函数;
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为(-3,1);
④一条曲线y=|3-x2|和直线y=a,(a∈R)的公共点个数是M,则M的值不可能是1;
其中正确的有①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=x2-x-1的顶点坐标是 (  )
A.(-$\frac{1}{2}$,$\frac{5}{4}$)B.($\frac{1}{2}$,-$\frac{5}{4}$)C.(-$\frac{1}{2}$,-$\frac{5}{4}$)D.($\frac{1}{2}$,$\frac{5}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有下列说法:①曲线的切线与曲线有且只有一个公共点:
②曲线上任意一点都可以用割线逼近切线的方法作出过此点的切线:
③曲线在点P附近经过放大后可以近似的看成直线,则曲线在点P处一定存在切线;
④以曲线上某点为切点的曲线的切线可以作出两条.
其中,正确的是③(填序号)

查看答案和解析>>

同步练习册答案