精英家教网 > 高中数学 > 题目详情
20.已知平行四边形ABCD的三个顶点为A(-3,0),B(2,-2),C(5,2),且对角线交点为M,求顶点D的坐标及点M坐标.

分析 利用中点坐标公式求出M的坐标,然后求出点D的坐标.

解答 解:平行四边形ABCD的三个顶点为A(-3,0),B(2,-2),C(5,2),且对角线交点为M,
可得M($\frac{-3+5}{2}$,$\frac{0+2}{2}$),即M(1,1),
M为B、D的中点,S设D(x,y),则$\frac{x+2}{2}=1$,$\frac{y-2}{2}=1$,解得x=0,y=4,
D(0,4),M(1,1).

点评 本题考查中点坐标公式的应用,也可以利用平面向量坐标公式求解,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设条件p:实数x满足x2-4ax+3a2<0(a≠0);条件q:实数x满足x2+2x-8>0,且命题“若p,则q”的逆否命题为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在空间四边形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点,AB=AD,BC=CD.
(1)求证:AC⊥BD;
(2)求证:四边形EFGH为矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若$\overrightarrow{OA}$=3e1,$\overrightarrow{OB}$=7e2,$\overrightarrow{PB}$=4$\overrightarrow{AP}$,$\overrightarrow{OP}$=me1+ne2,则m-n等于(  )
A.$\frac{1}{4}$B.1C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2x-$\frac{1}{{2}^{x}}$.
(1)判断函数f(x)的奇偶性;
(2)判断并证明函数f(x)的单调性;
(3)对于函数f(x),当x∈(-1,1)时,f(1-m)+f(2-m)≥0,求实数m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.简答题
已知tanα=2,求下列各式的值
(1)$\frac{sinα+3cosα}{3sinα-cosα}$(2)$\frac{2si{n}^{2}α-co{s}^{2}α}{si{n}^{2}α+sinαcosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个沿某方向做直线运动的物体,位移s(单位:m)与时间t(单位:s)的关系为s(t)=$\left\{\begin{array}{l}{vt,0≤t{≤t}_{0}}\\{\frac{v}{2}t{,t}_{0}<t<{2t}_{0}}\end{array}\right.$则该物体在[0,$\frac{1}{2}$t0],[$\frac{1}{2}$t0,$\frac{3}{2}$t0]内的平均速度分别是v,$\frac{3v}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解答:
(1)$(3\frac{3}{8})^{\frac{1}{3}}$×${9}^{\frac{1}{2}}$+2lg5+lg4-lne+lg100
(2)已知${a}^{\frac{1}{2}}+{a}^{-\frac{1}{2}}$=3,求a+a-1,a2+a-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果直线ax+2y+2=0与直线3x-y=0平行,则实数a=(  )
A.-3B.-6C.-$\frac{3}{2}$D.-$\frac{2}{3}$

查看答案和解析>>

同步练习册答案