精英家教网 > 高中数学 > 题目详情
15.从双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左焦点F引圆x2+y2=a2的切线,切点为T,延长线FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|=$\frac{b}{2}$,则双曲线的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.3

分析 设F′是双曲线的右焦点,连接PF′.利用三角形的中位线定理和双曲线的定义可得:|OM|=$\frac{1}{2}$|PF′|=$\frac{1}{2}$(|PF|-2a)=$\frac{1}{2}$|PF|-a=|MF|-a,于是|OM|-|MT|=|MF|-|MT|-a=|FT|-a,连接OT,则OT⊥FT,在Rt△FOT中,|OF|=c,|OT|=a,可得|FT|=$\sqrt{|OF{|}^{2}-|OT{|}^{2}}$=b.即可得出结论.

解答 解:如图所示,
设F′是双曲线的右焦点,连接PF′.
∵点M,O分别为线段PF,FF′的中点,
由三角形中位线定理得到:|OM|=$\frac{1}{2}$|PF′|=$\frac{1}{2}$(|PF|-2a)=$\frac{1}{2}$|PF|-a=|MF|-a,
∴|OM|-|MT|=|MF|-|MT|-a=|FT|-a,连接OT,因为PT是圆的切线,则OT⊥FT,
在Rt△FOT中,|OF|=c,|OT|=a,∴|FT|=$\sqrt{|OF{|}^{2}-|OT{|}^{2}}$=b.
∴|OM|-|MT|=b-a.
∵|MO|-|MT|=$\frac{b}{2}$,
∴b-a=$\frac{b}{2}$,
∴b=2a,
∴c=$\sqrt{5}$a,
∴e=$\frac{c}{a}$=$\sqrt{5}$.
故选:A.

点评 本题考查了双曲线的定义和性质的运用,结合三角形的中位线定理、直线与圆相切的性质等知识,考查学生的计算能力和分析能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.求值:sin1°sin3°sin5°…sin87°sin89°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在直线x+3y=0上找一点,使它到直线x+3y-3=0的距离与到原点的距离相等,则这个点的坐标是(-$\frac{9}{10}$,$\frac{3}{10}$)或($\frac{9}{10}$,-$\frac{3}{10}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知8sinα+10cosβ=5,8cosα+10sinβ=5$\sqrt{3}$.求证:sin(α+β)=-sin($\frac{π}{3}$+α)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.3名男同学和2名女同学结伴到某地游玩,看到一个稻草人模型,他们准备与稻草人模型站成一排合影,则同性同学不相邻的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆M上有三点,A(1,0),B(0,$\sqrt{3}$),C(2,$\sqrt{3}$),则直线x-$\sqrt{3}$y+1=0被圆M截得的弦长为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{21}}{3}$C.$\frac{4}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.数列{an}满足a1+2a2+…+nan=4-$\frac{n+2}{{2}^{n-1}}$(n∈N*
(1)求数列{an}通项公式;
(2)求数列{(2n+1)an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在(x+y)(x+1)4的展开式中x的奇数次幂项的系数之和为32,则y的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设sinθ+cosθ=k.
(1)若θ是锐角,证明k>1;
(2)若k=$\frac{1}{5}$,且0<θ<π,求cosθ-sinθ的值;
(3)若k=1,求sin4θ+cos4θ的值.

查看答案和解析>>

同步练习册答案