精英家教网 > 高中数学 > 题目详情
6.下列说法错误的是(  )
A.“ac2>bc2”是“a>b”的充分不必要条件
B.若p∨q是假命题,则p∧q是假命题
C.命题“存在x0∈R,2${\;}^{{x}_{0}}$≤0”的否定是“对任意的x∈R,2x>0”
D.命题“对任意的x∈R”,2x>x2”是真命题

分析 A.根据不等式的基本性质,“a>b”不一定“ac2>bc2”结论,因为必须有c2>0这一条件;反过来若“ac2>bc2”,说明c2>0一定成立,一定可以得出“a>b”,即可得出答案;
B.利用复合命题的真假关系进行判断;
C.根据特称命题的否定是全称命题.即可得到结论.
D.x=2,4时,命题不正确.

解答 解:当c=0时,a>b?ac2>bc2;当ac2>bc2时,说明c≠0,由c2>0,得ac2>bc2⇒a>b,故“ac2>bc2”是“a>b”成立的充分不必要条件,正确.
若命题p∨q是假命题,则p,q都是假命题,所以命题p∧q是假命题,正确;
∵命题是特称命题,
∴根据特称命题的否定是全称命题.得到命题的否定是:对任意的x∈R,2x>0,
x=2,4时,命题不正确.
故选:D.

点评 本题考查不等式的性质和充要条件的判断,考查复合命题,考查命题的否定与真假判断,是一道好题,本题是基本概念题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知当α=$\frac{π}{6}$时,sinα<α<tanα,那么对于任意0<α<$\frac{π}{2}$,sinα<α<tanα是否成立?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知三棱锥P-ABC的四个顶点均在半径为3的球面上,且满足$\overrightarrow{PA}•\overrightarrow{PB}=0$,$\overrightarrow{PB}•\overrightarrow{PC}=0$,$\overrightarrow{PC}•\overrightarrow{PA}=0$,则三棱锥P-ABC的侧面积的最大值为(  )
A.9B.18C.36D.72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在正三棱柱中,AB=6,BB1=5.求它的侧面积、体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在复平面内,复数z=(a-1)+(a+1)i(a∈R,i为虚数单位)对应的点位于第三象限的充要条件是(  )
A.a>1B.a<1C.a>-1D.a<-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给出下列命题:
①函数f(x)=$\frac{{\sqrt{|{x-2}|-1}}}{{{{log}_2}(x-1)}}$的定义域为[3,+∞);
②将函数y=tanx图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再把图象向左平移$\frac{2π}{3}$个单位,得到g(x)的图象,则g(x)的单调递增区间是$(kπ-\frac{5π}{3},kπ+\frac{π}{3})(k∈Z)$;
③已知函数f(x)=$\left\{{\begin{array}{l}{{{10}^{-x}}-2,x≤0}\\{2ax-1,x>0}\end{array}}$(a是常数且a>0),若f(x)>0在$[\frac{1}{2},+∞)$上恒成立,则a的取值范围是[1,+∞);
④已知函数f(x)=$\left\{{\begin{array}{l}{{{10}^{-x}}-2,x≤0}\\{2ax-1,x>0}\end{array}}$(a是常数且a>0),对任意的x1,x2<0且x1≠x2,恒有$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}$;
⑤已知函数f(x)=$\left\{{\begin{array}{l}{{x^3},x≤a}\\{{x^2},x>a}\end{array}}$,若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是a<0或a>1.
其中正确命题的序号是①④⑤.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某四棱锥的三视图如图所示,该四棱锥的体积是(  )
A.32B.$\frac{32}{3}$C.48D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知x∈R,设$\vec m=(2cosx\;,\;sinx+cosx)$,$\vec n=(\sqrt{3}sinx\;,\;sinx-cosx)$,记函数$f(x)=\vec m•\vec n$.
(1)求函数f(x)取最小值时x的取值范围;
(2)设△ABC的角A,B,C所对的边分别为a,b,c,若f(C)=2,$c=\sqrt{3}$,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={0,1},B={z|z=x+y,x∈A,y∈A},则B的子集个数为(  )
A.3B.4C.7D.8

查看答案和解析>>

同步练习册答案