精英家教网 > 高中数学 > 题目详情

若椭圆的准线方程是y=±18,椭圆上一点P到两焦点的距离分别为915,则该椭圆的方程是

[  ]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
5
,若将这个椭圆绕着它的右焦点按逆时针方向旋转
π
2
后,所得新椭圆的一条准线方程是y=
16
3
,则原来的椭圆方程是
 

新椭圆方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下面是关于圆锥曲线的四个命题:
①抛物线y2=2px的准线方程为y=-
p
2

②设A、B为两个定点,a为正常数,若
|PA|
+
|PB|
=2a
,则动点P的轨迹为椭圆;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④平面内与定点A(5,0)的距离和定直线l:x=
16
5
的距离之比为
5
4
的点的轨迹方程为
x2
16
-
y2
9
=1
.其中所有真命题的序号为
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C1的渐近线方程是y=±
3
3
x,且它的一条准线与渐近线y=
3
3
x及x轴围成的三角形的周长是
3
2
(1+
3
)
.以C1的两个顶点为焦点,以C1的焦点为顶点的椭圆记为C2
(1)求C2的方程;
(2)已知斜率为
1
2
的直线l经过定点P(m,0)(m>0)并与椭圆C2交于不同的两点A、B,若对于椭圆C2上任意一点M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ•
OB
成立.求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列几个命题:①已知F1,F2为两定点,=4,动点M满足,则动点M的轨是椭圆。 ②双曲线C:x²-y²=2013的离心率为③抛物线y=ax2的准线方程是y=1,则a=-4。④若函数是R上的单调函数,则实数m的取值范围是[1,﹢∞﹚。其中真命题有____________

查看答案和解析>>

同步练习册答案