精英家教网 > 高中数学 > 题目详情
直线y=x+1在矩阵
10
1-2
作用下变换得到的图形与x2+y2=1的位置关系是(  )
A、相交B、相离
C、相切D、无法判定
分析:设直线y=x+1上任意一点(x0,y0),(x,y)是所得的直线上一点,得到两点的关系式,再由点在直线上上代入化简求出变换后的直线,然后利用圆心到直线的距离与半径进行比较即可判定位置关系.
解答:解:设直线y=x+1上任意一点(x0,y0),(x,y)是所得的直线上一点,
10
1-2
 
x0
y0
=
x
y

∴x0=x,x0-2y0=y
解得x0=x,y0=
x-y
2

∴点(x0,y0)在直线y=x+1上,则y0=x0+1
从而
x-y
2
=x+1即直线y=x+1在矩阵
1  0
1-2
作用下变换得到直线x+y+2=0
x2+y2=1表示圆心在坐标原点,半径为1的圆
则圆心到直线的距离d=
2
2
=
2
>1
故直线与圆相离
故选B.
点评:本题主要考查了矩阵与变换的运算,结合求轨迹方程得方法:代入法求解,同时考查了直线与圆的位置关系的判定,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系中,定义:(xnyn)
11
1-1
=(xn+1yn+1)
,即
xn+1=xn+yn
yn+1=xn-yn
(n∈N*)为点Pn(xn,yn)到点Pn+1(xn+1,yn+1)的一个变换.我们把它称为点变换(或矩阵变换).已知P1(1,0).
(1)求直线y=x在矩阵变换下的直线方程;
(2)设dn=|OPn|2(n∈N*),求证:dn为等比数列,并写出dn的通项公式;
(3)设P2(x2,y2)…,Pn(xn+1,yn+1)(n∈N*)是经过点变换得到的一列点.求数列xn,yn的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
1
0
e2=
0
1

(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
为参数),C2的参数方程为
x=2t
y=t+1
(t
为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-2:矩阵与变换)
已知矩阵A=
33
cd
,若矩阵A属于特征值6的一个特征向量为α1=
1
1
,属于特征值1的一个特征向量为α2=
3
-2

①求矩阵A;②求直线y=x+2在矩阵A的作用下得到的曲线方程.

查看答案和解析>>

科目:高中数学 来源:2010年福建省厦门外国语学校高考数学模拟试卷(理科)(解析版) 题型:解答题

(选修4-2:矩阵与变换)
已知矩阵A=,若矩阵A属于特征值6的一个特征向量为α1=,属于特征值1的一个特征向量为α2=
①求矩阵A;②求直线y=x+2在矩阵A的作用下得到的曲线方程.

查看答案和解析>>

同步练习册答案