精英家教网 > 高中数学 > 题目详情
已知点B是半圆x2+y2=1(y>0)上的一个动点,点A的坐标为(2,0),△ABC是以BC为斜边的等腰直角三角形,且顶点A、B、C按顺时针方向排列.求点C的轨方程.
设C(x,y),令B(x0,y0),
∵点A的坐标为(2,0),△ABC是以BC为斜边的等腰直角三角形,
∴kAB×kAC=-1,且AB=AC
y
x-2
×
y0
x0-2
=-1
    ①;
(x-2)2+y2=(x0-2)2+y02   ②
由①得x0-2=
yy0
x-2
代入②得(x-2)2+y2=(
yy0
x-2
)
2
+y0 2

整理得(x-2)2+y2=y0 2×(1+
y2
(x-2)2
)
,即y0 2=
(x-2)2+y2
1+
y2
(x-2)2
=(x-2)2
又y0>0,x≥2
可得y0=x-2代入①得
y
x0-2
=-1
,解得x0=2-y
又点B(x0,y0)是半圆x2+y2=1(y>0)上的一个动点
所以有(x-2)2+(y-2)2=1(x≥2)
故点C的轨迹方程是(x-2)2+(y-2)2=1(x≥2)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知半椭圆
x2
b2
+
y2
a2
=1 (y≥0)
和半圆x2+y2=b2(y≤0)组成曲线C,其中a>b>0;如图,半椭圆
x2
b2
+
y2
a2
=1 (y≥0)
内切于矩形ABCD,且CD交y轴于点G,点P是半圆x2+y2=b2(y≤0)上异于A,B的任意一点,当点P位于点M(
6
3
,-
3
3
)
时,△AGP的面积最大.
(1)求曲线C的方程;
(2)连PC、PD交AB分别于点E、F,求证:AE2+BF2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点B是半圆x2+y2=1(y>0)上的一个动点,点A的坐标为(2,0),△ABC是以BC为斜边的等腰直角三角形,且顶点A、B、C按顺时针方向排列.求点C的轨方程.

查看答案和解析>>

科目:高中数学 来源:2002-2003学年北京市朝阳区高二(上)期末数学试卷(解析版) 题型:解答题

已知点B是半圆x2+y2=1(y>0)上的一个动点,点A的坐标为(2,0),△ABC是以BC为斜边的等腰直角三角形,且顶点A、B、C按顺时针方向排列.求点C的轨方程.

查看答案和解析>>

科目:高中数学 来源:2012年江苏省盐城中学高考数学一模试卷(解析版) 题型:解答题

已知半椭圆和半圆x2+y2=b2(y≤0)组成曲线C,其中a>b>0;如图,半椭圆内切于矩形ABCD,且CD交y轴于点G,点P是半圆x2+y2=b2(y≤0)上异于A,B的任意一点,当点P位于点时,△AGP的面积最大.
(1)求曲线C的方程;
(2)连PC、PD交AB分别于点E、F,求证:AE2+BF2为定值.

查看答案和解析>>

同步练习册答案