(本小题满分13分)
设
是数列
(
)的前
项和,
,且
,
,
.
(I)证明:数列
(
)是常数数列;
(II)试找出一个奇数
,使以18为首项,7为公比的等比数列
(
)中的所有项都是数列
中的项,并指出
是数列
中的第几项.
(I)数列
(
)是常数数列
(II)若
是数列
中的第
项,由
得
,取
,得
,
是数列
中的第
项.
【解析】解:(I)当
时,由已知得
.
因为
,所以
.
…………………………①
于是
.
…………………………………………………②
由②-①得:
.……………………………………………③
于是
.……………………………………………………④
由④-③得:
.…………………………………………………⑤
即数列
(
)是常数数列.
(II)由①有
,所以
.
由③有
,所以
,
而⑤表明:数列
和
分别是以
,
为首项,6为公差的等差数列.
所以
,
,
.
由题设知,
.当
为奇数时,
为奇数,而
为偶数,所以
不是数列
中的项,
只可能是数列
中的项.
若
是数列
中的第
项,由
得
,取
,得
,此时
,由
,得
,![]()
,从而
是数列
中的第
项.
(注:考生取满足
,
的任一奇数,说明
是数列
中的第
项即可)
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)求函数
的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数
在区间
上的图象.
(3)设0<x<
,且方程
有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为
的函数
是奇函数.
(1)求
的值;(2)判断函数
的单调性;
(3)若对任意的
,不等式恒成立
,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱
的所有棱长都为2,
为
的中点。
(Ⅰ)求证:
∥平面
;
(Ⅱ)求异面直线
与
所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知
为锐角,且
,函数
,数列{
}的首项
.
(1) 求函数
的表达式;
(2)在
中,若
A=2
,
,BC=2,求
的面积
(3) 求数列
的前
项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com