精英家教网 > 高中数学 > 题目详情
{an}为等比数列,a2+a3=1,a3+a4=-2,则a5+a6+a7=(  )
分析:由题意可得数列的公比,进而可得首项,代入通项公式可得答案.
解答:解:设等比数列{an}的公比为q,
则q=
a3+a4
a2+a3
=-2,
故可得a2+a3=a1q+a1q2=2a1=1,即a1=
1
2

∴a5+a6+a7=a5(1+q+q2)=
1
2
×
(-2)4(1-2+4)=24
故选B
点评:本题考查等比数列的通项公式,求出数列的首项和公比是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}为等比数列,且a1=2,a2=4
(1)求数列{an}的通项公式
(2)设数列{bn}为等差数列,且b1=a1,a2=b3,求数列{bn}的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}为等比数列,a1=1,a2=3.
(1)求最小的自然数n,使an≥2007;
(2)求和:T2n=
1
a1
-
2
a2
+
3
a3
-…-
2n
a2n

查看答案和解析>>

科目:高中数学 来源: 题型:

若{an}为等比数列,Tn是其前n项积,且T5是二项式(
x
+
1
x2
)5
展开式的常数项,则log5a3的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x2+1,g(x)=2x,数列{an}满足对于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
3
2
)
.数列{bn}满足bn=logana,设k,l∈N*bk=
1
1+3l
bl=
1
1+3k

(1)求证:数列{an}为等比数列,并指出公比;
(2)若k+l=9,求数列{bn}的通项公式.
(3)若k+l=M0(M0为常数),求数列{an}从第几项起,后面的项都满足an>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

若{an}为等比数列a5•a11=3,a3+a13=4,则
a5
a15
=(  )
A、3
B、
1
3
C、3或
1
3
D、-3或-
1
3

查看答案和解析>>

同步练习册答案