精英家教网 > 高中数学 > 题目详情
(2013•天津模拟)如图在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=
2
2
AD,设E、F分别为PC、BD的中点.
(Ⅰ) 求证:EF∥平面PAD;
(Ⅱ) 求证:面PAB⊥平面PDC;
(Ⅲ) 求二面角B-PD-C的正切值.
分析:(Ⅰ)利用线面平行的判定定理:连接AC,只需证明EF∥PA,利用中位线定理即可得证;
(Ⅱ)利用面面垂直的判定定理:只需证明PA⊥面PDC,进而转化为证明PA⊥PD,PA⊥DC,易证三角形PAD为等腰直角三角形,可得PA⊥PD;由面PAD⊥面ABCD的性质及正方形ABCD的性质可证CD⊥面PAD,得CD⊥PA;
(Ⅲ)设PD的中点为M,连结EM,MF,则EM⊥PD,由(Ⅱ)可证PD⊥平面EFM,则∠EMF是二面角B-PD-C的平面角,通过解Rt△FEM可得所求二面角的正切值;
解答:(Ⅰ)证明:ABCD为平行四边形,
连结AC∩BD=F,F为AC中点,E为PC中点,
∴在△CPA中EF∥PA,且PA?平面PAD,EF?平面PAD,
∴EF∥平面PAD;
(Ⅱ)证明:因为面PAD⊥面ABCD,平面PAD∩面ABCD=AD,ABCD为正方形,
∴CD⊥AD,CD?平面ABCD,
所以CD⊥平面PAD,∴CD⊥PA,
PA=PD=
2
2
AD

所以△PAD是等腰直角三角形,且∠PAD=
π
2
,即PA⊥PD,
CD∩PD=D,且CD、PD?面ABCD,PA⊥面PDC,
又PA?面PAB,
∴面PAB⊥面PDC;
(Ⅲ)解:设PD的中点为M,连结EM,MF,则EM⊥PD,
由(Ⅱ)知EF⊥面PDC,EF⊥PD,PD⊥面EFM,PD⊥MF,∠EMF是二面角B-PD-C的平面角,
Rt△FEM中,EF=
1
2
PA=
2
4
a
EM=
1
2
CD=
1
2
a
tan∠EMF=
EF
EM
=
2
4
a
1
2
a
=
2
2

故所求二面角的正切值为
2
2
点评:本题考查线面平行、面面垂直的判定及二面角的求解,考查学生的推理论证能力及逻辑思维能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•天津模拟)已知函数f(x)=sin2x+2
3
sinxcosx+3cos2x,x∈R.求:
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)求函数f(x)在区间[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津模拟)已知函数f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
,g(x)=1-x+
x2
2
-
x3
3
+
x4
4
-…-
x2013
2013
,设函数F(x)=f(x+3)•g(x-4),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b-a的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津模拟)在平行四边形ABCD中,
AE
=
EB
CF
=2
FB
,连接CE、DF相交于点M,若
AM
AB
AD
,则实数λ与μ的乘积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津模拟)阅读如图的程序框图,若运行相应的程序,则输出的S的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津模拟)设椭圆C:
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足
BF1
=
F1F2
,且AB⊥AF2
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若过A、B、F2三点的圆恰好与直线x-
3
y-3=0
相切,求椭圆C的方程;                      
(Ⅲ)在(Ⅱ)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,若点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,求m的取值范围.

查看答案和解析>>

同步练习册答案