精英家教网 > 高中数学 > 题目详情
已知函数,关于方程g[f(x)]-a=0(a为正实数)的根的叙述有下列四个命题
①存在实数a,使得方程恰有3个不同的实根;
②存在实数a,使得方程恰有4个不同的实根;
③存在实数a,使得方程恰有5个不同的实根;
④存在实数a,使得方程恰有6个不同的实根;
其中真命题的个数是( )
A.0
B.1
C.2
D.3
【答案】分析:关于x的方程g[f(x)]-a=0可化为g[f(x)]=a,画出函数y=g[f(x)]和y=a的图象可得解.
解答:解:关于x的方程g[f(x)]-a=0可化为g[f(x)]=a,
分别画出函数y=g[f(x)]和y=a(a>0)的图象,如图.
由图可知,它们的交点情况是:
可能有4个、5个、或6个不同的交点,故有:
①不存在实数a,使得方程恰有3个不同的实根;
②存在实数a,使得方程恰有4个不同的实根;
③存在实数a,使得方程恰有5个不同的实根;
④存在实数a,使得方程恰有6个不同的实根;
其中真命题的个数是3.
故选D.
点评:本题考查了根的存在性及根的个数判断、分段函数,以及函数与方程的思想,数形结合的思想.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年海南省儋州市洋浦中学高三(下)3月月考数学试卷(理科)(解析版) 题型:解答题

已知函数R),g(x)=lnx.
(1)求函数F(x)=f(x)+g(x)的单调区间;
(2)若关于x的方程(e为自然对数的底数)只有一个实数根,求a的值.

查看答案和解析>>

科目:高中数学 来源:2011年山东省高考数学仿真押题试卷02(理科)(解析版) 题型:选择题

已知函数,关于方程g[f(x)]-a=0(a为正实数)的根的叙述有下列四个命题
①存在实数a,使得方程恰有3个不同的实根;
②存在实数a,使得方程恰有4个不同的实根;
③存在实数a,使得方程恰有5个不同的实根;
④存在实数a,使得方程恰有6个不同的实根;
其中真命题的个数是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市临川二中高考数学一模试卷(理科)(解析版) 题型:选择题

已知函数,关于方程g[f(x)]-a=0(a为正实数)的根的叙述有下列四个命题
①存在实数a,使得方程恰有3个不同的实根;
②存在实数a,使得方程恰有4个不同的实根;
③存在实数a,使得方程恰有5个不同的实根;
④存在实数a,使得方程恰有6个不同的实根;
其中真命题的个数是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源:云南省月考题 题型:单选题

已知函数,关于方程g[f(x)]﹣a=0(a为正实数)的根的叙述有下列四个命题
①存在实数a,使得方程恰有3个不同的实根;
②存在实数a,使得方程恰有4个不同的实根;
③存在实数a,使得方程恰有5个不同的实根;
④存在实数a,使得方程恰有6个不同的实根;其中真命题的个数是
[     ]
A.0
B.1
C.2
D.3

查看答案和解析>>

同步练习册答案