精英家教网 > 高中数学 > 题目详情
设△ABC的三个内角A、B、C对边分别是a、b、c,已知a=
7
,b2+c2-a2+bc=0
(1)求△ABC外接圆半径;
(2)若△ABC的面积为
3
3
2
,求b+c的值.
分析:(1)利用余弦定理表示出cosA,将已知等式代入求出cosA的值,根据A为三角形内角,利用特殊角的三角函数值即可求出A的度数,确定出sinA的值,再利用正弦定理即可求出外接圆半径;
(2)根据a,sinA,以及已知的三角形面积,利用面积公式求出bc的值,再利用余弦定理即可求出b+c的值.
解答:解:(1)∵b2+c2-a2+bc=0,
∴cosA=
b2+c2-a2
2bc
=
-bc
2bc
=-
1
2

∵A为三角形内角,∴A=
3
,即sinA=
3
2

根据正弦定理得:
a
sinA
=2R,即R=
21
3

(2)∵a=
7
,A=
π
3

∴由面积公式得:S=
1
2
bcsinA=
1
2
bcsin
3
=
3
3
2
,即bc=6,
∴由余弦定理得:a2=b2+c2-2bccos
3
=7,变形得:(b+c)2=13,
则b+c=
13
点评:此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设△ABC的三个内角A,B,C对边分别是a,b,c,已知
a
sinA
=
3
b
cosB

(I)求角B的大小;
(II)若cos(B+C)+
3
sinA=2,且bc=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2cosxsin(x+
π
6
)+2sinxcos(x+
π
6
)

(I)当x∈[0,
π
2
]时,求f(x)
的值域;
(II)设△ABC的三个内角A,B,C所对的三边依次为a,b,c,已知f(A)=1,a=
7
,△ABC面积为
3
3
2
,求b+c

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三个内角A、B、C对的边分别为a、b、c且a2+b2=mc2(m为常数),若tanC(tanA+tanB)=2tanAtanB,则实数m的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三个内角分别为A,B,C.向量
m
=(1,cos
C
2
)与
n
=(
3
sin
C
2
+cos
C
2
3
2
)
共线.
(Ⅰ)求角C的大小;
(Ⅱ)设角A,B,C的对边分别是a,b,c,且满足2acosC+c=2b,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三个内角为A,B,C,则“sinA>sinB”是“cosA<cosB”的(  )

查看答案和解析>>

同步练习册答案