精英家教网 > 高中数学 > 题目详情
设S1=12,S2=12+22+12,S3=12+22+32+22+12,…,Sn=12+22+…+n2+…+22+12,…,某学生猜测Sn=n(an2+b),老师:回答正确,则a+b=
 
分析:根据已知中S1=12,S2=12+22+12,S3=12+22+32+22+12,…,我们归纳分析后,即可得到一个关于Sn的表达式,进而确定出a,b的值后,即可得到答案.
解答:解:∵S1=12=1×(
2
3
×12+
1
3
),
S2=12+22+12=2×(
2
3
×22+
1
3
),
S3=12+22+32+22+12=3×(
2
3
×32+
1
3
),
…,
由此我们可以推断
Sn=12+22+…+n2+…+22+12=n×(
2
3
×n2+
1
3
),
故a=
2
3
,b=
1
3

∴a+b=1
故答案为:1
点评:本题考查的知识点是归纲推理,其中根据已知中S1=12,S2=12+22+12,S3=12+22+32+22+12,…及某学生猜测Sn=n(an2+b),老师回答正确,而将问题转化为一个方程问题是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设S1=12,S2=12+22+12,S3=12+22+32+22+12,…,
Sn=12+22+32+…+n2+…+32+22+12,…
用数学归纳法证明:公式Sn=
n(2n2+1)3
对所有的正整数n都成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设S1=12,S2=12+22+12,S3=12+22+32+22+12,…,
Sn=12+22+32+…+n2+…+32+22+12,…
用数学归纳法证明:公式Sn=
n(2n2+1)
3
对所有的正整数n都成立.

查看答案和解析>>

科目:高中数学 来源:2011年上海市宝山区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

设S1=12,S2=12+22+12,S3=12+22+32+22+12,…,Sn=12+22+…+n2+…+22+12,…,某学生猜测Sn=n(an2+b),老师:回答正确,则a+b=   

查看答案和解析>>

科目:高中数学 来源:1985年全国统一高考数学试卷(文科)(解析版) 题型:解答题

设S1=12,S2=12+22+12,S3=12+22+32+22+12,…,
Sn=12+22+32+…+n2+…+32+22+12,…
用数学归纳法证明:公式对所有的正整数n都成立.

查看答案和解析>>

同步练习册答案