精英家教网 > 高中数学 > 题目详情

(必做题,每题10分)已知四棱锥平面,且,底面为直角梯形,
分别是的中点.

(1)求证:// 平面

(2)求截面与底面所成二面角的大小;

(3)求点到平面的距离.

解析(一):

为原点,以分别为建立空间直角坐标系

分别是的中点,

可得:

…2分

设平面的的法向量为

则有:

,则,……3分

,又平面

//平面                      ……4分

(2)设平面的的法向量为

则有:

,则,              …………6分

为平面的法向量,                 

又截面与底面所成二面角为锐二面角,

∴截面与底面所成二面角的大小为         …………8分

(3)∵,∴所求的距离…10分

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年江苏省姜堰市高三第一学期学情调研数学试卷 题型:解答题

必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.

某商场搞促销,当顾客购买商品的金额达到一定数量之后可以抽奖,根据顾客购买商品的金额,从箱中(装有4只红球,3只白球,且除颜色外,球的外部特征完全相同)每抽到一只红球奖励20元的商品(当顾客通过抽奖的方法确定了获奖商品后,即将小球全部放回箱中)

(1)当顾客购买金额超过500元而少于1000元(含1000元)时,可从箱中一次随机抽取3个小红球,求其中至少有一个红球的概率;

(2)当顾客购买金额超过1000元时,可一次随机抽取4个小球,设他所获奖商品的金额为元,求的概率分布列和数学期望.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省姜堰市高三第一学期学情调研数学试卷 题型:解答题

必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.

某商场搞促销,当顾客购买商品的金额达到一定数量之后可以抽奖,根据顾客购买商品的金额,从箱中(装有4只红球,3只白球,且除颜色外,球的外部特征完全相同)每抽到一只红球奖励20元的商品(当顾客通过抽奖的方法确定了获奖商品后,即将小球全部放回箱中)

(1)当顾客购买金额超过500元而少于1000元(含1000元)时,可从箱中一次随机抽取3个小红球,求其中至少有一个红球的概率;

(2)当顾客购买金额超过1000元时,可一次随机抽取4个小球,设他所获奖商品的金额为元,求的概率分布列和数学期望.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省姜堰市高三学情调查数学试卷 题型:解答题

必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.

某商场搞促销,当顾客购买商品的金额达到一定数量之后可以抽奖,根据顾客购买商品的金额,从箱中(装有4只红球,3只白球,且除颜色外,球的外部特征完全相同)每抽到一只红球奖励20元的商品(当顾客通过抽奖的方法确定了获奖商品后,即将小球全部放回箱中)

(1)当顾客购买金额超过500元而少于1000元(含1000元)时,可从箱中一次随机抽取3个小红球,求其中至少有一个红球的概率;

(2)当顾客购买金额超过1000元时,可一次随机抽取4个小球,设他所获奖商品的金额为元,求的概率分布列和数学期望.

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(必做题,每题10分)第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。
将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):

若身高在175cm以上(包括175cm)定义为“高个子”,

   身高在175cm以下(不包括175cm)定义为“非高个子”,

且只有“女高个子”才担任“礼仪小姐”。

如果用分层抽样的方法从“高个子”和“非高个子”中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?

(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。

查看答案和解析>>

同步练习册答案