精英家教网 > 高中数学 > 题目详情

已知单调递增的等比数列满足:,且的等差中项.

(1)求数列的通项公式;

(2)若,求使成立的正整数的最小值.

 

【答案】

(1);(2)5

【解析】

试题分析:(1)由等差中项得,再联立列方程并结合等比数列的单调性求,进而根据等比数列的通项公式求;(2)求数列的前n项和,首先考虑其通项公式,根据通项公式特点来选择适合的求和方法,该题由(1)得,代入中,可求得,故可采取错位相减法求,然后代入不等式中,得关于n的不等式,进而考虑其不等式解即可.

试题解析:(1)设等比数列的首项为,公比为依题意,有,代入,得解之得 或

又数列单调递增,所以数列的通项公式为 

(2)

两式相减,得 

,即 

易知:当时,,当时,

使成立的正整数的最小值为5.   

考点:1、等差中项;2、等比数列的通项公式;3、数列求和.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知单调递增的等比数列an满足:a2+a3+a4=28,且a3+2是a2、a4的等差中项,则数列an的前n项和Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=anlog
12
an,求数列{bn}
的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=anlog 
12
an,Sn=b1+b2+b3+…+bn,对任意正整数n,Sn+(n+m)an+1<0恒成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)已知单调递增的等比数列{an}中,a2+a3+a4=28,且a3+2是a2、a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=log2an,求数列{
1bnbn+1
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项
①求数列{an}的通项公式;
②设bn=anlog2an,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案