分析 (1)由已知列式c=$\sqrt{3}$,$\frac{1}{2}×\sqrt{3}×y=\frac{3}{4}$,∴$\frac{1}{{a}^{2}}+\frac{3}{4{b}^{2}}=1$,得a2,b2即可;
(2)设直线l的方程为:y=k(x-2),A(x1,y1),B(x2,y2).
由$\left\{\begin{array}{l}{y=k(x-2)}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$得(1+4k2)x2-16k2x+16k2-4=0,x1+x2=$\frac{16{k}^{2}}{1+4{k}^{2}}$,y1+y2=k(x1+x2)-4k=$\frac{-4k}{1+4{k}^{2}}$,
$\overrightarrow{{O}{T}}$=$\frac{{\sqrt{5}}}{5}$(${\overrightarrow{{O}{A}}$+$\overrightarrow{{O}{B}}}$)=$\frac{\sqrt{5}}{5}({x}_{1}+{x}_{2},{y}_{1}+{y}_{2})$,得T($\frac{\sqrt{5}}{5}•\frac{16{k}^{2}}{1+4{k}^{2}},\frac{\sqrt{5}}{5}•\frac{-4k}{1+4{k}^{2}}$)代入 圆C1,可得化为176k4-24k2-5=0可求得k.
解答 解:(1)∵椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一个焦点为F1(-$\sqrt{3}$,0),∴c=$\sqrt{3}$
∵△MOF1的面积为$\frac{3}{4}$,∴$\frac{1}{2}×\sqrt{3}×y=\frac{3}{4}$,求得y=$\frac{\sqrt{3}}{2}$,
又∵M(1,$\frac{\sqrt{3}}{2}$)为椭圆上的一点,∴$\frac{1}{{a}^{2}}+\frac{3}{4{b}^{2}}=1$,解得a2=4,b2=1;
椭圆C的标准方程为:$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(2)假设存在过点A(2,0)的直线l交曲线C2于点B,使$\overrightarrow{{O}{T}}$=$\frac{{\sqrt{5}}}{5}$(${\overrightarrow{{O}{A}}$+$\overrightarrow{{O}{B}}}$),且点T在圆x2+y2=1上.
当直线的斜率不存在时,点A与点B重合,此时点T的坐标为($\frac{4\sqrt{5}}{5},0)$,显然不在圆上,不符合题意.
∴设直线l的方程为:y=k(x-2),A(x1,y1),B(x2,y2).
由$\left\{\begin{array}{l}{y=k(x-2)}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$得(1+4k2)x2-16k2x+16k2-4=0,
△>0.∴x1+x2=$\frac{16{k}^{2}}{1+4{k}^{2}}$,y1+y2=k(x1+x2)-4k=$\frac{-4k}{1+4{k}^{2}}$,
$\overrightarrow{{O}{T}}$=$\frac{{\sqrt{5}}}{5}$(${\overrightarrow{{O}{A}}$+$\overrightarrow{{O}{B}}}$)=$\frac{\sqrt{5}}{5}({x}_{1}+{x}_{2},{y}_{1}+{y}_{2})$,
∴T($\frac{\sqrt{5}}{5}•\frac{16{k}^{2}}{1+4{k}^{2}},\frac{\sqrt{5}}{5}•\frac{-4k}{1+4{k}^{2}}$)代入 圆C1,可得化为176k4-24k2-5=0,$\frac{1}{4}$,k=$±\frac{1}{2}$.
在过点A(2,0)的直线l交曲线C2于点B,使$\overrightarrow{{O}{T}}$=$\frac{{\sqrt{5}}}{5}$(${\overrightarrow{{O}{A}}$+$\overrightarrow{{O}{B}}}$),且点T在圆x2+y2=1上,
出直线l的方程为:y=±$\frac{1}{2}$(x-2)
点评 本题考查了、直线与圆相交转化为方程联立可得根与系数的关系、向量运算,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com