精英家教网 > 高中数学 > 题目详情
已知:偶函数f(x)在(0,+∞)上是增函数,判断f(x)在(-∞,0)上的单调性,并证明你的结论.
因为偶函数在关于原点对称的区间上单调性相反;
且f(x)在(0,+∞)上是增函数,
故f(x)在(-∞,0)是减函数.
证明如下:若-∞<x1<x2<0,那么0<-x2<-x1<+∞.
由于偶函数在(0,+∞)上是增函数,故有:f(-x2)<f(-x1
又根据偶函数的性质可得:f(-x1)=f(x1),f(-x2)=f(x2
综上可得:f(x1)>f(x2
故f(x)在(-∞,0)上是减函数
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)(x≠0)对于任意的x,y∈R且x,y≠0满足f(xy)=f(x)+f(y).
(1)求f(1),f(-1)的值;
(2)求证:y=f(x)为偶函数;
(3)若y=f(x)在(0,+∞)上是增函数,解不等式f(
16
x)+f(x-5)≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:偶函数f(x)在(0,+∞)上是增函数,判断f(x)在(-∞,0)上的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:偶函数f(x)在(0,+∞)上是增函数,判断f(x)在(-∞,0)上的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2002-2003学年广东省广州86中高一(上)10月月考数学试卷(解析版) 题型:解答题

已知:偶函数f(x)在(0,+∞)上是增函数,判断f(x)在(-∞,0)上的单调性,并证明你的结论.

查看答案和解析>>

同步练习册答案