精英家教网 > 高中数学 > 题目详情
设x=3 cosφ,φ为参数,椭圆=1的参数方程为____________________.

解析:把x=3 cosφ代入椭圆方程,得到

=1,

所以y2=4(1-cos2φ)=4 sin2φ,

即y=±2 sinφ.

由参数φ的任意性,可取y=2 sinφ.所以椭圆=1的参数方程是

(φ为参数).

答案:(φ为参数).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=cosωx(
3
sinωx+cosωx),其中0<ω<2
.(I)若f(x)的周期为π,当-
π
6
≤x≤
π
3
时,求f(x)
的值域;(II)若函数f(x)的图象的一条对称轴为x=
π
3
,求ω
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知函数f(x)=tan(3x+
π
4
)

(1)求f(
π
9
)
的值;
(2)设α∈(π,
2
)
,若f(
α
3
+
π
4
)=2
,求cos(α-
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)已知函数f(x)=
3
|cos
π
2
x|(x≥0)
,图象的最高点从左到右依次记为P1,P3,P5,…,函数y=f(x)图象与x轴的交点从左到右依次记为P2,P4,P6,…,设Sn=
P1P2
P2P3
+(
P2P3
P3P4
)2
+(
P3P4
P4P5
)3
+(
P4P5
P5P6
)4
+…+(
PnPn+1
pn+1pn+2
)n
,则
lim
n→∞
Sn
1+(-2)n
=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源:长宁区一模 题型:填空题

已知函数f(x)=
3
|cos
π
2
x|(x≥0)
,图象的最高点从左到右依次记为P1,P3,P5,…,函数y=f(x)图象与x轴的交点从左到右依次记为P2,P4,P6,…,设Sn=
P1P2
P2P3
+(
P2P3
P3P4
)2
+(
P3P4
P4P5
)3
+(
P4P5
P5P6
)4
+…+(
PnPn+1
pn+1pn+2
)n
,则
lim
n→∞
Sn
1+(-2)n
=______.

查看答案和解析>>

同步练习册答案