精英家教网 > 高中数学 > 题目详情
△ABC中,A、B、C是三角形的三内角,a、b、c是三内角对应的三边,已知b2+c2-a2=bc.
(1)求角A的大小;
(2)若a=
7
,且△ABC的面积为
3
3
2
,求b+c的值.
分析:(1)利用余弦定理表示出cosA,将已知等式代入计算求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;
(2)利用三角形的面积公式列出关系式,将a,sinA及已知面积代入求出bc的值,再利用余弦定理列出关系式,将bc的值代入求出b2+c2的值,进而求出b+c的值.
解答:解:(1)∵b2+c2-a2=bc,
∴cosA=
b2+c2-a2
2bc
=
bc
2bc
=
1
2

又A为三角形内角,∴A=
π
3

(2)∵a=
7
,A=
π
3
,S△ABC=
3
3
2

∴由面积公式得:
1
2
bcsin
π
3
=
3
3
2
,即bc=6①,
由余弦定理得:b2+c2-2bccos
π
3
=7,即b2+c2-bc=7②,
变形得:(b+c)2=25,
则b+c=5.
点评:此题考查了余弦定理,三角形的面积公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别是A、B、C的对边.向量
m
=(2,0),
n
=(sinB,1-cosB)
(Ⅰ)若B=
π
3
.求
m
n

(Ⅱ)若
m
n
所成角为
π
3
.求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c三边成等差数列,求证:B≤60°.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A:B:C=4:2:1,证明
1
a
+
1
b
=
1
c

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,a,b,c分别为角A,B,C的对边.若a(a+b)=c2-b2,则角C为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•静安区一模)在ρABC中,a、b、c 分别为∠A、∠B、∠C的对边,∠A=60°,b=1,c=4,则
a+b+c
sinA+sinB+sinC
=
2
39
3
2
39
3

查看答案和解析>>

同步练习册答案