分析 (1)推导出AB,AD,SA两两垂直,建立空间直角坐标系,利用向量法能证明CE∥平面SAD.
(2)求出平面SAC法向量和$\overrightarrow{BD}$,由此能证明BD⊥平面SAC.
(3)求出$\overrightarrow{CE}$=(0,-$\sqrt{2}$,1),平面SAC法向量$\overrightarrow{n}$=(-$\sqrt{2}$,1,0),由此利用向量法能求出直线CE与平面SAC所成角的余弦值.
解答 证明:(1)∵SA=AB=2,SB=2$\sqrt{2}$,∴SA⊥AB,![]()
又平面SAB⊥ABCD,AB为其交线,∴SA⊥平面ABCD,
又∵AB⊥AD,∴AB,AD,SA两两垂直,
建立如图所示的空间直角坐标系,
A (0,0,0),B(2,0,0),C(1,$\sqrt{2}$,0),D(0,$\sqrt{2}$,0),S(0,0,2),E(1,0,1),
$\overrightarrow{CE}$=(0,-$\sqrt{2}$,1),平面SAD的法向量$\overrightarrow{AB}$=(1,0,0),
∴$\overrightarrow{CE}•\overrightarrow{AB}$=0,CE?平面SAD,
∴CE∥平面SAD.
(2)设平面SAC法向量$\overrightarrow{n}$=(x,y,z),
$\overrightarrow{AS}$=(0,0,2),$\overrightarrow{AC}$=(1,$\sqrt{2}$,0),$\overrightarrow{BD}$=(-2,$\sqrt{2}$,0),
$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AS}=2z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=x+\sqrt{2}y=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(-$\sqrt{2},1,0$),
∴$\overrightarrow{n}$∥$\overrightarrow{BD}$,
∴BD⊥平面SAC.
解:(3)$\overrightarrow{CE}$=(0,-$\sqrt{2}$,1),平面SAC法向量$\overrightarrow{n}$=(-$\sqrt{2}$,1,0),
设直线CE与平面SAC所成角为θ,
则sinθ=$\frac{|\overrightarrow{CE}•\overrightarrow{n}|}{|\overrightarrow{CE}|•|\overrightarrow{n}|}$=$\frac{\sqrt{2}}{3}$,
∴cosθ=$\frac{\sqrt{7}}{3}$,
∴直线CE与平面SAC所成角的余弦值为$\frac{\sqrt{7}}{3}$.
点评 本题考查线面平行、线面垂直的证明,考查线面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 非p或q | B. | p且q | C. | 非p且非q | D. | 非p或非q |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com