精英家教网 > 高中数学 > 题目详情
判断下列命题是全称命题还是存在性命题,并写出它们的否定:
(1)p:对任意的x∈R,x2+x+1=0都成立;
(2)p:?x∈R,x2+2x+5>0.
分析:利用全称命题和特称命题的定义分别判断,然后写出它们的否定.
解答:解:(1)由于命题中含有全称量词“任意的”,因而是全称命题;又由于“任意的”的否定为“存在一个”,
因此,¬p:存在一个x∈R,使x2+x+1≠0成立,即“?x∈R,使x2+x+1≠0成立”;
(2)由于“?x∈R”表示存在一个实数x,即命题中含有存在量词“存在一个”,
因而是存在性命题;又由于“存在一个”的否定为“任意一个”,
因此,¬p:对任意一个x都有x2+2x+5≤0,即“?x∈R,x2+2x+5≤0”.
点评:本题主要考查含有量词的命题的判断,以及含有量词的命题的否定,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、判断下列命题是全称命题还是特称命题,并判断其真假.
(1)对数函数都是单调函数;
(2)至少有一个整数,它既能被2整除,又能被5整除;
(3)?x0∈{x|x∈R},log2x0>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列命题是全称命题还是特称命题,写出这些命题的否定,并说出这些否定的真假,不必证明.
(Ⅰ)存在实数x,使得x2+2x+3<0;
(Ⅱ)有些三角形是等边三角形;
(Ⅲ)方程x2-8x-10=0的每一个根都不是奇数.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列命题是全称命题还是特称命题,写出这些命题的否定,并说出这些否定的真假,不必证明.
(1)末尾数是偶数的数能被4整除;
(2)对任意实数x,都有x2-2x-3<0;
(3)方程x2-5x-6=0有一个根是奇数.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列命题是全称命题还是特称命题,并判断其真假.
(1)a>0,且a≠1,则对任意实数x,ax>0;
(2)对任意实数x1,x2,若x1<x2,则tanx1<tanx2
(3)?T0∈R,使|sin(x+T0)|=|sinx|;
(4)?x0∈R,使x\o\al(2,0)+1<0.

查看答案和解析>>

同步练习册答案