精英家教网 > 高中数学 > 题目详情
设x、y满足约束条件分别求下列各式的最大值、最小值.(x、y均为整数)

(1)z=6x+10y;

(2)z=2x-y;

(3)z=2x-y.

解:(1)先作出可行域,如下图中△ABC表示的区域,且求得A(5,2)、B(1,1)、C(1,).

    作出直线l0:6x+10y=0,再将直线l0平移,当l0的平行线l1过B点时,可使z=6x+10y达到最小值,当l0的平行线l2过A点时,可使z=6x+10y达到最大值.

∴zmin=6×1+10×1=16;zmax=6×5+10×2=50.

(2)同上,作出直线l0:2x-y=0,再将直线l0平移,当l0的平行线l1过C点时,可使z=2x-y达到最小值,当l0的平行线l2过A点时,可使z=2x-y达到最大值.

∴zmax=8,zmin=-.

(3)同时,作出直线l0:2x-y=0,再将直线l0平移,当l0的平行线l2过A点时,可使z=2x-y达到最大值,zmax=8.当l0的平行线l1过C点时,可使z=2x-y达到最小值,但由于不是整数,而最优解(x,y)中,x、y必须都是整数,所以可行域内的点C(1,)不是最优解.当l0的平行线经过可行域内的整点(1,4)时,可使z=2x-y达到最小值.

∴zmin=-2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x,y满足约束条件
x+y≤1
y≤x
y≥-2
,则z=3x+y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为12,则
3
a
+
2
b
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)(文)设x,y满足约束条件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值为
1
4
,则a的值
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为6,则w=2ab的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x+y≥0
x-y+3≥0
x≤3
,则z=2x-y的最大值为
 

查看答案和解析>>

同步练习册答案