精英家教网 > 高中数学 > 题目详情
已知等差数列前n项和Sn,若满足S3=0,S5=-1,
(1)求{an}的通项公式;
(2)求数列{
1
a2n-1×a2n+1
}的前n项和Sn
考点:数列的求和
专题:点列、递归数列与数学归纳法
分析:(1)根据等差数列的前n项和公式解方程组即可求{an}的通项公式;
(2)求出求数列{
1
a2n-1×a2n+1
}的、通项公式,利用裂项法即可求前n项和Sn
解答: 解:(1)由等差数列的性质可得
S3=3a1+3d=0
S5=5a1+10d=-1
解得a1=-
1
5
,d=
1
5

则{an}的通项公式an=-
1
5
+
1
5
(n-1)=
1
5
n-
2
5
=
1
5
(n-2);
(2)
1
a2n-1×a2n+1
=
1
1
5
(2n-3)×
1
5
(2n-1)
=
25
2
1
2n-3
-
1
2n-1

则数列{
1
a2n-1×a2n+1
}的前n项和Sn=
25
2
1
-1
-
1
1
+
1
1
-
1
3
+
1
3
-
1
5
+…+
1
2n-3
-
1
2n-1
)=
25
2
(-1-
1
2n-1
)=
-25n
2n-1
点评:本题主要考查等差数列的通项公式的求解,以及利用裂项法进行求和,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a=2log32,b=log
1
4
2
c=2-
1
3
,则a,b,c的大小关系是(  )
A、a>b>c
B、c>b>a
C、c>a>b
D、a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:

若角α的终边经过点P(-3,4),则tanα=(  )
A、
4
5
B、-
3
5
C、-
4
3
D、-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}是等比数列,若S4=2,S8=6,则a17+a18+a19+a20=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式|x-2|+|x+a|≥3的解集为R,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比例数列{an}中,
(1)a4=27,q=-3,求a7
(2)a2=18,a4=8,求a1与q;
(3)a5=4,a7=6,求a9
(4)a5-a1=15,a4-a2=6,求a3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1-2x
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
mx
4x2+16
,g(x)=(
1
2
|x-m|,其中m∈R且m≠0.
(Ⅰ)判断函数f(x)的单调性;
(Ⅱ)当m<-2时,求函数F(x)=f(x)+g(x)在区间[-2,2]上的最值;
(Ⅲ)设函数h(x)=
f(x),x≥2
g(x),x<2
,当m≥2时,若对于任意的x1∈[2,+∞),总存在唯一的x2∈(-∞,2),使得h(x1)=h(x2)成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)周期为4,且当x∈(-1,3]时,f(x)=
k
1-x2
,x∈(-1,1]
1-|x-2|,x∈(1,3]
,其中k>0,若方程3f(x)=x恰有5个实数根,则k的取值范围是
 

查看答案和解析>>

同步练习册答案