精英家教网 > 高中数学 > 题目详情
海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里A处,如图.现假设:
①失事船的移动路径可视为抛物线y=
1249
x2

②定位后救援船即刻沿直线匀速前往救援;
③救援船出发t小时后,失事船所在位置的横坐标为7t.
(1)当t=0.5时,写出失事船所在位置P的纵坐标.若此时两船恰好会合,求救援船速度的大小和方向;
(2)问救援船的时速至少是多少海里才能追上失事船?
分析:(1)t=0.5时,确定P的横坐标,代入抛物线方程可得P的纵坐标,利用|AP|,即可确定救援船速度的大小和方向;
(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2),从而可得v关于t的关系式,利用基本不等式,即可得到结论.
解答:解:(1)t=0.5时,P的横坐标xP=7t=
7
2
,代入抛物线方程y=
12
49
x2
中,得P的纵坐标yP=3.
由|AP|=
949
2
,得救援船速度的大小为
949
海里/时.
由tan∠OAP=
7
30
,得∠OAP=arctan
7
30
,故救援船速度的方向为北偏东arctan
7
30
弧度;
(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2).
由vt=
(7t)2+(12t2+12)2
,整理得v2=144(t2+
1
t2
)+337
因为t2+
1
t2
≥2,当且仅当t=1时等号成立,所以v2≥144×2+337=252,即v≥25.
因此,救援船的时速至少是25海里才能追上失事船.
点评:本题主要考查函数模型的选择与运用.选择恰当的函数模型是解决此类问题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:
①失事船的移动路径可视为抛物线y=
1249
x2

②定位后救援船即刻沿直线匀速前往救援;
③救援船出发t小时后,失事船所在位置的横坐标为7t
(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.
(2)问救援船的时速至少是多少海里才能追上失事船?

查看答案和解析>>

科目:高中数学 来源:2013届江苏省高三上学期期中考试理科数学试卷 (解析版) 题型:解答题

海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发小时后,失事船所在位置的横坐标为

(1)当时,写出失事船所在位置的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向 (若确定方向时涉及到的角为非特殊角,用符号及其满足的条件表示即可)

(2)问救援船的时速至少是多少海里才能追上失事船?

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(上海卷解析版) 题型:解答题

海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海

A处,如图. 现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发小时后,失事船所在位置的横坐标为.

    (1)当时,写出失事船所在位置P的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)

    (2)问救援船的时速至少是多少海里才能追上失事船?(8分)

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(上海卷解析版) 题型:解答题

海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海

里A处,如图. 现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发小时后,失事船所在位置的横坐标为.

    (1)当时,写出失事船所在位置P的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)

    (2)问救援船的时速至少是多少海里才能追上失事船?(8分)

 

 

查看答案和解析>>

同步练习册答案