精英家教网 > 高中数学 > 题目详情
如图所示,A∉平面α,AB、AC是平面α的两条斜线,O是A在平面α内的射影,AO=4,OC=
3
,BO⊥OC,∠OBA=30°,则C到AB的距离为
15
15
分析:利用勾定理,根据已知,先求出△ABC的三边长,利用余弦定理求出B角的余弦,进而根据平方关系求出B的正弦,结合C到AB的距离为BC•sinB得到答案.
解答:解:在Rt△AOB中,
∵AO=4,∠OBA=30°,
∴AB=8,OB=4
3

∵BO⊥OC,
在Rt△BOC中,由OC=
3

∴BC=
51

在Rt△AOC中,AC=
19

在△ABC中,cosB=
51+64-19
2•
51
•8
=
2
51
17

∴sinB=
85
17

则C到AB的距离为BC•sinB=
51
85
17
=
15

故答案为:
15
点评:本题考查的知识点是点到线的距离,其中将空间问题转化为平面解三角形问题是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在平面直角坐标系中,O为坐标原点,四边形ABCD是平行四边形,已知A(-1,-2)、B(2,3)、D(-2,-1).
(1)分别求两条对角线AC,BD的长度;
(2)若向量
AB
-t
OD
OD
垂直,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,AB⊥平面BCD,∠BCD=90°则图中互相垂直的平面有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,将平面直角坐标系中的纵轴绕点O顺时针旋转300(坐标轴的长度单位不变)构成一个斜坐标系xOy,平面上任一点P关于斜坐标系的坐标(x,y)用如下方式定义:过P作两坐标轴的平行线分别交坐标轴Ox于点M,Oy于点N,则M在Ox轴上表示的数为x,N在Oy轴上表示的数为y.在斜坐标系中,若A,B两点的坐标分别为(1,2),(-2,3),则线段AB的长为
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)如图所示,在平面直角坐标系xOy上放置一个边长为1的正方形PABC,此正方形PABC沿x轴滚动(向左或向右均可),滚动开始时,点P位于原点处,设顶点P(x,y)的纵坐标与横坐标的函数关系是y=f(x),x∈R,该函数相邻两个零点之间的距离为m.
(1)写出m的值并求出当0≤x≤m时,点P运动路径的长度l;
(2)写出函数f(x),x∈[4k-2,4k+2],k∈Z的表达式;研究该函数的性质并填写下面表格:
函数性质 结  论
奇偶性
偶函数
偶函数
单调性 递增区间
[4k,4k+2],k∈z
[4k,4k+2],k∈z
递减区间
[4k-2,4k],k∈z
[4k-2,4k],k∈z
零点
x=4k,k∈z
x=4k,k∈z
(3)试讨论方程f(x)=a|x|在区间[-8,8]上根的个数及相应实数a的取值范围.

查看答案和解析>>

同步练习册答案