精英家教网 > 高中数学 > 题目详情
A、B、C是半径为1的球面上三点,B、C两点间的球面距离为,点A与B、C两点间的球面距离为,球心为O,求:

(1)∠BOC、∠AOB的大小;

(2)球心到截面ABC的距离.

解析:(1)∠BOC=,∠AOB=.

 (2)连结OA、OB、OC、AB、AC、BC得三棱锥O—ABC,设OH⊥平面ABC于H,则h=OH为球心到截面ABC的距离.由OA⊥OB,OA⊥OC得OA⊥平面OBC,VO—ABC=·1·S△OBC=×.

又VO—ABC=·h·S△ABC=·h··,

=h,即h=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A、B、C是半径为1的球面上的三点,B、C两点间的球面距离为
π
3
,点A与B、C两点间的球面距离均为
π
2
,O为球心,
求:(1)∠AOB、∠BOC的大小;
(2)球心O到截面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A,B,C是半径为1的圆上三点,若AB=
3
,则
AB
AC
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

A、B、C是半径为1的球面上三点,B、C间的球面距离为
π
3
,点A与B、C两点间的球面距离均为
π
2
,且球心为O,求:
(1)∠AOB,∠BOC的大小;
(2)球心到截面ABC的距离;
(3)球的内接正方体的表面积与球面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是半径为1的圆内接△ABC的三边,且S△ABC=1,则以sinA,sinB,sinC为三边组成的三角形的面积为
1
4
1
4

查看答案和解析>>

同步练习册答案