精英家教网 > 高中数学 > 题目详情
在△ABC中,A=60°,BC=
10
,D是AB边上的一点,且BD=2,CD=
2
,则AC的长为
2
3
3
2
3
3
分析:△BDC中,先由余弦定理求出cos∠BDC,即可求解∠ADC,然后在△ADC中,由正弦定理可求AC
解答:解:∵BC=
10
,BD=2,CD=
2

△BDC中,由余弦定理可得cos∠BDC=
4+2-10
2×2
2
=-
2
2

∴∠BDC=135°,∠ADC=45°
∵△ADC中,∠ADC=45°,A=60°,DC=
2

由正弦定理可得,
AC
sin45°
=
2
sin60°

∴AC=
2
×
2
2
3
2
=
2
3
3

故答案为:
2
3
3
点评:本题主要考查了正弦定理及余弦定理在求解三角形中的综合应用,解题的关键是熟练掌握基本知识
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A=
π
6
,D是BC边上任意一点(D与B、C不重合),且丨
AB
|2=|
AD
|2+
BD
DC
,则∠B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=6,b=4,C=30°,则△ABC的面积是(  )
A、12
B、6
C、12
3
D、8
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A=
π
6
∠C=
π
2
|AC|=
3
,M是AB的中点,那么(
CA
-
CB
)•
CM
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A=
π
6
,D是BC边上任意一点(D与B,C不重合)且|
AB
|2=|
AD
|2+
BD
DC
,则∠B
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=
6
,b=2,c=
3
+1,求A、B、C及S△ABC

查看答案和解析>>

同步练习册答案