精英家教网 > 高中数学 > 题目详情
精英家教网已知A、B、C、D为圆O上的四点,直线DE为圆O的切线,AC∥DE,AC与BD相交于H点
(Ⅰ)求证:BD平分∠ABC
(Ⅱ)若AB=4,AD=6,BD=8,求AH的长.
分析:(Ⅰ)证明BD平分∠ABC可通过证明D是
AC
的中点,利用相等的弧所对的圆周角相等证明BD是角平分线;
(Ⅱ)由图形知,可先证△ABH∽△DBC,得到
AH
CD
=
AB
BD
,再由等弧所对的弦相等,得到AD=DC,从而得到
AH
AD
=
AB
BD
,求出AH的长
解答:解:(Ⅰ)∵AC∥DE,直线DE为圆O的切线,∴D是弧
AC
的中点,即
AD
=
DC

又∠ABD,∠DBC与分别是两弧
AD
DC
所对的圆周角,故有∠ABD=∠DBC,
所以BD平分∠ABC
(Ⅱ)∵由图∠CAB=∠CDB且∠ABD=∠DBC
∴△ABH∽△DBC,∴
AH
CD
=
AB
BD

AD
=
DC

∴AD=DC,
AH
AD
=
AB
BD

∵AB=4,AD=6,BD=8
∴AH=3
点评:本题考查与圆有关的比例线段,解题的关键是对与圆有关性质掌握得比较熟练,能根据这些性质得出角的相等,边的相等,从而使问题得到证明
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、已知a,b,c,d为实数,且c>d.则“a>b”是“a-c>b-d”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,d为实数,且c>d.则“a>b”是“a-c>b-d”的
必要不充分
必要不充分
条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C,D为同一球面上的四点,且连接每两点的线段长都等于2,则球心到平面BCD的距离等于
6
6
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C,D为四个不同的点,则它们能确定
一或四
一或四
个平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,d为实数,判断下列命题的真假.
(1)若ac2>bc2,则a>b
(2)若a<b<c,则 a2>ab>b2
(3)若a>b>0,则
a
d
b
c

(4)若0<a<b,则 
b
a
b+x
a+x

查看答案和解析>>

同步练习册答案