精英家教网 > 高中数学 > 题目详情
定义:若数列{an}对任意的正整数n,都有|an+1|+|an|=d(d为常数),则称{an}为“绝对和数列”,d叫做“绝对公和”,已知“绝对和数列”{an}中,a1=2,“绝对公和”d=2,则其前2012项和S2012的最小值为
-2008
-2008
分析:利用“绝对和数列”的定义写出数列的前几项找出规律,当n为偶数时an为0;当n为奇数且不为1时,|an|=2,为使和最小,令非0的数都取-2 (首项除外),从而可求其前2012项和S2012的最小值.
解答:解:∵|an+1|+|an|=2,a1=2,
∴a2=0,
∴|a3|=2
∴a4=0,
∴|a5|=0

∴|a1|=|a3|=|a5|=…=|a2011|=2,
a2=a4=…=a2012=0,
为使前2012项和S2012最小,
则a3=a5=…=a2011=-2,
∴前2012项和S2012的最小值为:2+(-2)×1005=-2008.
故答案为:-2008.
点评:本题考查求数列的求和,考查对新概念“绝对和数列”的理解与应用,考查分类讨论思想,令a3=a5=…=a2011=-2是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:若数列{An}满足An+1=An2,则称数列{An}为“平方数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是“平方数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式.
(3)记bn=log2an+1Tn,求数列{bn}的前n项之和Sn,并求使Sn>4020的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式.
(3)记bn=log2an+1Tn,求数列{bn}的前n项之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若数列{an}对任意的正整数n,都有|an+1|+|an|=d(d为常数),则称{an}为“绝对和数列”,d叫做“绝对公和”,已知“绝对和数列”{an}中,a1=2,“绝对公和”d=2,则其前2012项和S2012的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若数列{An}满足An+1=
A
2
n
则称数列{An}为“平方递推数列”,已知数列{an}中,a1=2,点{an,an+1}在函数f(x)=2x2+2x的图象上,其中n的正整数.
(1)证明数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列;
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式;
(3)记bn=log2an+1Tn,求数列{bn}的前n项和Sn,并求使Sn>2008的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=x2+4x+2的图象上,其中n为正整数.
(1)判断数列{an+2}是否为“平方递推数列”?说明理由.
(2)证明数列{lg(an+2)}为等比数列,并求数列{an}的通项.
(3)设Tn=(2+a1)(2+a2)…(2+an),求Tn关于n的表达式.

查看答案和解析>>

同步练习册答案