精英家教网 > 高中数学 > 题目详情
11.在△ABC中,三边a,b,c成等比数列,且b=2,B=$\frac{π}{3}$,则S△ABC=$\sqrt{3}$.

分析 利用等比数列的性质可求b2=ac,结合已知利用三角形面积公式即可计算得解.

解答 解:∵a,b,c成等比数列,
∴b2=ac,
∵b=2,B=$\frac{π}{3}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×$22×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题主要考查了等比数列的性质,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E,求点E的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在一次实验中,测得(x,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则x与y之间的回归直线方程为(  )
A.$\widehat{y}$=x+1B.$\widehat{y}$=x+2C.$\widehat{y}$=2x+1D.$\widehat{y}$=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若xlog25=1,求5x+5-x=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(6,x),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\sqrt{3}sinxcosx-{sin^2}x$.
(1)求f(x)的最小正周期及函数的单调增区间;
(2)当$x∈[0,\frac{π}{2}]$时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对任意的非零实数a,b,若$a?b=\left\{\begin{array}{l}\frac{b-1}{a},a<b\\ \frac{a+1}{b},a≥b\end{array}\right.$则lg10000$?{(\frac{1}{2})^{-2}}$=(  )
A.$\frac{1}{4}$B.$\frac{5}{4}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知正整数数列{an}对任意p,q∈N*,都有ap+q=ap+aq,若a2=4,则a9=(  )
A.6B.9C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知两点F1(-6,0)、F2(6,0),点P为椭圆上任意一点,|PF1|+|PF2|=20
(1)求以F1、F2为焦点且过点P的椭圆的标准方程;
(2)求出椭圆的长轴的长,短轴长,顶点的坐标,离心率.

查看答案和解析>>

同步练习册答案