精英家教网 > 高中数学 > 题目详情
椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(0,3)到椭圆上的点最远距离为5
2

(1)求此时椭圆C的方程;
(2)设斜率为k(k≠0)的直线m与椭圆C相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于过点P(0,
3
3
)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.
(1)∵F1、F2、B1、B2四点共圆,
∴b=c,
∴a2=b2+c2=2b2
设椭圆的方程为
x2
2b2
+
y2
b2
=1
,N(0,3)
设H(x,y)为椭圆上一点,则|HN|2=x2+(y-3)2=-(y+3)2+2b2+18,(-b≤y≤b),
①若0<b<3,|HN|2的最大值b2+6b+9=50得 b=-3±5
2
(舍去),
②若b≥3,|HN|2的最大值2b2+18=50得b2=16,
∴所求的椭圆的方程为:
x2
32
+
y2
16
=1

(2)设直线L的方程为y=kx+m,代入
x2
32
+
y2
16
=1
得(1+2k2)x2+4kmx+(2m2-32)=0.
由直线l与椭圆相交于不同的两点知△=(4km)2-4(1+2k2)(2m2-32)>0,
m2<32k2+16.②
要使A、B两点关于过点P、Q的直线对称,必须KPQ=-
1
k

设A(x1,y1)B(x2,y2),则xQ=
x1+x2
2
=-
2km
1+2k2
yQ=kxQ+m=
m
1+2k2

KPQ=
m
1+2k2
+
3
3
-
2km
1+2k2
=-
1
k

解得m=
1+2k2
3
.③
由②、③得
(1+2k2)2
3
<32k2+16

-
1
2
k2
47
2

∵k2>0,
0<k2
47
2

-
94
2
<k<0
或0<k<
94
2

故当-
94
2
<k<0
或0<k<
94
2
时,A、B两点关于过点P、Q的直线对称.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一条斜率为1的直线l与离心率e=
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)交于P、Q两点,直线l与y轴交于点R,且
.
OP
.
OQ
=-3,
.
PR
=3
.
RQ
,求直线l和椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

直角坐标系xoy中,已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右顶点分别是A1,A2,上、下顶点为B2,B1,点P(
3
5
a
,m)(m>0)是椭圆C上一点,PO⊥A2B2,直线PO分别交A1B1、A2B2于点M、N.
(1)求椭圆离心率;
(2)若MN=
4
21
7
,求椭圆C的方程;
(3)在(2)的条件下,设R点是椭圆C上位于第一象限内的点,F1、F2是椭圆C的左、右焦点,RQ平分∠F1RF2且与y轴交于点Q,求点Q纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1的离心率为
3
2
,过椭圆C上一点P(2,1)作倾斜角互补的两条直线,分别与椭圆交于点A、B,直线AB与x轴交于点M,与y轴负半轴交于点N.
(Ⅰ)求椭圆C的方程:
(Ⅱ)若S△PMN=
3
2
,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左焦点为F1(-1,0),右焦点为F2(1,0),短轴两个端点为A、B.与x轴不垂直的直线l与椭圆C交于不同的两点M、N,记直线AM、AN的斜率分别为k1、k2,且k1k2=
3
2

(1)求椭圆C的方程;
(2)求证直线l与y轴相交于定点,并求出定点坐标.
(3)当弦MN的中点P落在△MF1F2内(包括边界)时,求直线l的斜率的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点的坐标分别为A(-2,0),B(2,0),离心率e=
1
2

(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为F1,F2,若直线l:y=k(x-1)(k≠0)与椭圆交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.

查看答案和解析>>

同步练习册答案