抛物线M: 的准线过椭圆N: 的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.
(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
(1) (2)-1
【解析】
试题分析:(1)由抛物线的准线方程,求出p即可;
(2)由直线BC方程求出x1和x2之间的关系式,然后用x1和x2表示出D点的坐标,
即可求出直线CD的斜率.
试题解析:(1)因为椭圆N:的左焦点为(,0),
所以,解得p=1,所以抛物线M的方程为.
(2)由题意知 A(),因为,所以.由于t>0,所以t= ①
由点B(0,t),C( )的坐标知,直线BC的方程为,
由因为A在直线BC上,故有,将①代入上式,得,解得,又因为D( ),所以直线CD的斜率为
kCD====-1.
考点:1.抛物线的方程和性质;2.方程和斜率.3.椭圆方程的性质.
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
3x |
MA |
MB |
查看答案和解析>>
科目:高中数学 来源:2014届河南省毕业班阶段测试一文数学卷(解析版) 题型:解答题
抛物线M: 的准线过椭圆N: 的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.
(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分10分)
如图,已知抛物线M:的准线为,N为上的一个动点,过点N作抛物线M的两条切线,切点分别为A、B,再分别过A、B两点作的垂线,垂足分别为C,D。
求证:直线AB必经过y轴上的一个定点Q,并写出点Q的坐标;
若的面积成等差数列,求此时点N的坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分10分)
如图,已知抛物线M:的准线为,N为上的一个动点,过点N作抛物线M的两条切线,切点分别为A、B,再分别过A、B两点作的垂线,垂足分别为C,D。
求证:直线AB必经过y轴上的一个定点Q,并写出点Q的坐标;
若的面积成等差数列,求此时点N的坐标。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com