精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=1,an+1=1-
1
4an
bn=
2
2an-1
,其中n∈N*

(1)求证:数列{bn}是等差数列,并求数列{an}的通项公式an
(2)设cn=
2
n+1
an
,数列{cncn+2}的前n项和为Tn,是否存在正整整m,使得Tn
1
cmcm+1
对于n∈N*恒成立,若存在,求出m的最小值,若不存在,说明理由.
分析:(1)要证数列{bn}是等差数列,只需证明bn-1-bn=2;(2)由cn=
2
n+1
an
,可得cn=
1
n
从而利用裂项法求前n项和为Tn,进而利用最值思想解决恒成立问题.
解答:解:(1)证明:∵bn+1-bn=
2
2an+1-1
-
2
2an-1
=
2
2(1-
1
4an
)-1
-
2
2an-1
=
4an
2an-1
-
2
2an-1
=2(n∈N*)

∴数列{bn}是等差数列(3分)
∵a1=1,∴b1=
2
2a1-1
=2

∴bn=2+(n-1)×2=2n,由bn=
2
2an-1
得,2an-1=
2
bn
=
1
n
(n∈N*)

an=
n+1
2n

(2)cn=
2
n+1
an=
1
n

cncn+2=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)
Tn=c1c2+c2c4+c3c5+cncn+2
=
1
2
[(
1
1
-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+(
1
4
-
1
6
)++(
1
n
-
1
n+2
)]

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)<
3
4
.(10分)
依题意要使Tn
1
cmcm+1
对于n∈N*
恒成立,只需m(m+1)≥
3
4

解得m≤-
3
2
或m≥
1
2
.所以m的最小值为1(12分)
点评:本题主要考查等差数列的定义及通项公式的求解,考查裂项法求和及恒成立问题的处理 方法,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案