精英家教网 > 高中数学 > 题目详情
抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为阿基米德三角形,则△ABQ为(  )
分析:如图所示.设Q(-
p
2
,t)
,A(x1,y1),B(x2,y2).则
y
2
1
=2px1
y
2
2
=2px2

设直线AB:my=x-
p
2
,与抛物线联立可得根与系数的关系y1y2=-p2.设过点A的切线为k1(y-y1)=x-
y
2
1
2p
,与抛物线方程联立,可得△=0.设过点B的切线为k2(y-y2)=x-
y
2
2
2p
,与抛物线方程联立,可得△′=0.进而即可判断出结论.
解答:解:如图所示.
设Q(-
p
2
,t)
,A(x1,y1),B(x2,y2).则
y
2
1
=2px1
y
2
2
=2px2

设直线AB:my=x-
p
2
,联立
my=x-
p
2
y2=2px

化为y2-2pmy-p2=0,
得到y1+y2=2pm,y1y2=-p2
设过点A的切线为k1(y-y1)=x-
y
2
1
2p
,联立
k1(y-y1)=x-
y
2
1
2p
y2=2px

化为y2-2pk1y+2pk1y1-
y
2
1
=0

∵直线是抛物线的切线,∴△=(-2pk1)2-4(2pk1-
y
2
1
)
=0,化为pk1=y1
设过点B的切线为k2(y-y2)=x-
y
2
2
2p
,同理可得pk2=y2
∴p2k1k2=y1y2
p2k1k2=-p2
解得k1k2=-1.∴
1
k1k2
=-1

即△ABQ是直角三角形.
故选B.
点评:本题考查了阿基米德三角形的性质、直线与抛物线相切、焦点弦问题等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为(  )
A、
p2
2
B、p2
C、2p2
D、4p2

查看答案和解析>>

科目:高中数学 来源:黄冈模拟 题型:单选题

抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为(  )
A.
p2
2
B.p2C.2p2D.4p2

查看答案和解析>>

科目:高中数学 来源:2010年重庆市重点高中高考数学模拟试卷9(解析版) 题型:选择题

抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为( )
A.
B.p2
C.2p2
D.4p2

查看答案和解析>>

科目:高中数学 来源:2008-2009学年湖北省黄冈、宜昌、襄樊、孝感、荆州五市高三(下)4月联考数学试卷(文科)(解析版) 题型:选择题

抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为( )
A.
B.p2
C.2p2
D.4p2

查看答案和解析>>

同步练习册答案